Web-Based IoT Application Development

Author(s):  
S. Gopikrishnan ◽  
P. Priakanth

Wireless sensor network (WSN) is an outdated technology that is used to monitor the physical changes in environment and take necessary actions. The advancement in WSN leads to automation in physical environment by uploading the sensed data to internet or cloud. The internet of things concept deals with the issues of making things connected to the internet as well as in a network of smart devices. IoT application development presents an enormous opportunity to reshape entire industries. According to McKinsey & Co, the merging of the physical and digital worlds via IoT could generate up to $11.1 trillion a year in economic value by 2025. Hence, the development of the web-based IoT applications will take automation research to the next level. Many authors have proposed many solutions to make internet of things possible in day-to-day life. This chapter gives an introduction about the web-based application development based on internet of things. The major objective of this chapter is to discuss and resolve the challenges in IoT to automate the real-time problems.

Author(s):  
Eliot Bytyçi ◽  
Besmir Sejdiu ◽  
Arten Avdiu ◽  
Lule Ahmedi

The Internet of Things (IoT) vision is connecting uniquely identifiable devices to the internet, best described through ontologies. Furthermore, new emerging technologies such as wireless sensor networks (WSN) are recognized as essential enabling component of the IoT today. Hence, the interest is to provide linked sensor data through the web either following the semantic web enablement (SWE) standard or the linked data approach. Likewise, a need exists to explore those data for potential hidden knowledge through data mining techniques utilized by a domain ontology. Following that rationale, a new lightweight IoT architecture has been developed. It supports linking sensors, other devices and people via a single web by mean of a device-person-activity (DPA) ontology. The architecture is validated by mean of three rich-in-semantic services: contextual data mining over WSN, semantic WSN web enablement, and linked WSN data. The architecture could be easily extensible to capture semantics of input sensor data from other domains as well.


Author(s):  
Eliot Bytyçi ◽  
Besmir Sejdiu ◽  
Arten Avdiu ◽  
Lule Ahmedi

The Internet of Things (IoT) vision is to connect uniquely identifiable devices that surround us to the Internet, which is best described through ontologies. Thereby, new emerging technologies such as wireless sensor networks (WSN) are recognized as an essential enabling component of the IoT today. Hence, given the increasing interest to provide linked sensor data through the Web either following the Semantic Web Enablement (SWE) standard or the Linked Data approach, there is a need to also explore those data for potential hidden knowledge through data mining techniques utilized by a domain ontology. Following that rationale, a new lightweight IoT architecture SEMDPA has been developed. It supports linking sensors and other devices, as well as people via a single web by mean of a device-person-activity (DPA) crossroad ontology. The architecture is validated by mean of three rich-in-semantic services: contextual data mining over WSN, semantic WSN web enablement, and Linked WSN data. SEMDPA could be easily extensible to capture semantics of input sensor data from other domains as well.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2417
Author(s):  
Andrzej Michalski ◽  
Zbigniew Watral

This article presents the problems of powering wireless sensor networks operating in the structures of the Internet of Things (IoT). This issue was discussed on the example of a universal end node in IoT technology containing RFID (Radio Frequency Identification) tags. The basic methods of signal transmission in these types of networks are discussed and their impact on the basic requirements such as range, transmission speed, low energy consumption, and the maximum number of devices that can simultaneously operate in the network. The issue of low power consumption of devices used in IoT solutions is one of the main research objects. The analysis of possible communication protocols has shown that there is a possibility of effective optimization in this area. The wide range of power sources available on the market, used in nodes of wireless sensor networks, was compared. The alternative possibilities of powering the network nodes from Energy Harvesting (EH) generators are presented.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Jun Huang ◽  
Liqian Xu ◽  
Cong-cong Xing ◽  
Qiang Duan

The design of wireless sensor networks (WSNs) in the Internet of Things (IoT) faces many new challenges that must be addressed through an optimization of multiple design objectives. Therefore, multiobjective optimization is an important research topic in this field. In this paper, we develop a new efficient multiobjective optimization algorithm based on the chaotic ant swarm (CAS). Unlike the ant colony optimization (ACO) algorithm, CAS takes advantage of both the chaotic behavior of a single ant and the self-organization behavior of the ant colony. We first describe the CAS and its nonlinear dynamic model and then extend it to a multiobjective optimizer. Specifically, we first adopt the concepts of “nondominated sorting” and “crowding distance” to allow the algorithm to obtain the true or near optimum. Next, we redefine the rule of “neighbor” selection for each individual (ant) to enable the algorithm to converge and to distribute the solutions evenly. Also, we collect the current best individuals within each generation and employ the “archive-based” approach to expedite the convergence of the algorithm. The numerical experiments show that the proposed algorithm outperforms two leading algorithms on most well-known test instances in terms of Generational Distance, Error Ratio, and Spacing.


2021 ◽  
Vol 39 (4) ◽  
pp. 1-33
Author(s):  
Fulvio Corno ◽  
Luigi De Russis ◽  
Alberto Monge Roffarello

In the Internet of Things era, users are willing to personalize the joint behavior of their connected entities, i.e., smart devices and online service, by means of trigger-action rules such as “IF the entrance Nest security camera detects a movement, THEN blink the Philips Hue lamp in the kitchen.” Unfortunately, the spread of new supported technologies makes the number of possible combinations between triggers and actions continuously growing, thus motivating the need of assisting users in discovering new rules and functionality, e.g., through recommendation techniques. To this end, we present , a semantic Conversational Search and Recommendation (CSR) system able to suggest pertinent IF-THEN rules that can be easily deployed in different contexts starting from an abstract user’s need. By exploiting a conversational agent, the user can communicate her current personalization intention by specifying a set of functionality at a high level, e.g., to decrease the temperature of a room when she left it. Stemming from this input, implements a semantic recommendation process that takes into account ( a ) the current user’s intention , ( b ) the connected entities owned by the user, and ( c ) the user’s long-term preferences revealed by her profile. If not satisfied with the suggestions, then the user can converse with the system to provide further feedback, i.e., a short-term preference , thus allowing to provide refined recommendations that better align with the original intention. We evaluate by running different offline experiments with simulated users and real-world data. First, we test the recommendation process in different configurations, and we show that recommendation accuracy and similarity with target items increase as the interaction between the algorithm and the user proceeds. Then, we compare with other similar baseline recommender systems. Results are promising and demonstrate the effectiveness of in recommending IF-THEN rules that satisfy the current personalization intention of the user.


Sign in / Sign up

Export Citation Format

Share Document