Simulation of a Frequency-Modulated Continuous-Wave (FMCW) Radar Using Fast Fourier Transforms (FFT)

Author(s):  
Akbar Eslami

Frequency-modulated continuous-wave (FMCW) radar systems send known frequency signals to moving targets and receive the signal back to detectors. FMCW systems can be used to measure exact heights of landing aircrafts. In addition, they are used in early warning radar systems and in proximity sensors. The advantage of using these radar signals is that the object target velocity and range can be quickly calculated using fast Fourier transforms (FFT). Taking the row-wise FFT of the signal matrix gives range information in form of range bins. Then taking column-wise FFT enables displaying the velocity for each range bin. The three-dimensional graph of the resulting matrix gives a signal power plot with respect to both the range bin numbers and their velocity.

Frequenz ◽  
2017 ◽  
Vol 71 (3-4) ◽  
Author(s):  
Birk Hattenhorst ◽  
Christoph Baer ◽  
Thomas Musch ◽  
Timo Jaeschke ◽  
Nils Pohl

AbstractIn this contribution, a composite measurement concept for the gas flow determination in diverse stream scenarios is presented. The approach utilizes the pressure- and mixing-dependent relative permittivity of gaseous media, which, in case of a vortex or a marker gas, creates a detectable variation in the measuring beam of the radar. Since the measurement effect is very small, phase measurements based on highly precise and low jitter frequency-modulated continuous-wave radar systems in different frequency bands are applied. Moreover, disturbances caused by vibrations of the measurement setup are compensated out of the measurement signal.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2831 ◽  
Author(s):  
Youn-Sik Son ◽  
Hyuk-Kee Sung ◽  
Seo Heo

Recently, many automobiles adopt radar sensors to support advanced driver assistance system (ADAS) functions. As the number of vehicles with radar systems increases the probability of radar signal interference and the accompanying ghost target problems become serious. In this paper, we propose a novel algorithm where we deploy per-vehicle chirp sequence in a frequency modulated continuous wave (FMCW) radar to mitigate the vehicle-to-vehicle radar interference. We devise a chirp sequence set so that the slope of each vehicle’s chirp sequence does not overlap within the set. By assigning one of the chirp sequences to each vehicle, we mitigate the interference from the radar signals transmitted by the neighboring vehicles. We confirm the performance of the proposed method stochastically by computer simulation. The simulation results show that the detection and false alarm performance is improved significantly by the proposed method.


2021 ◽  
Vol 21 (5) ◽  
pp. 399-405
Author(s):  
Yongchul Jung ◽  
Seunghyeok Lee ◽  
Seongjoo Lee ◽  
Yunho Jung

A pre-processing technique is proposed to reduce the complexity of two-dimensional multiple signal classification (2D-MUSIC) for the joint range and angle estimation of frequency-modulated continuous-wave (FMCW) radar systems. By using the central symmetry of the angle steering vector from a uniform linear array (ULA) antenna and the linearity of the beat signal in the FMCW radar, this preprocessing technique transforms 2D-MUSIC from complex values into real values. To compare the computational complexity of the proposed algorithm with the conventional 2D-MUSIC, we measured the CPU processing time for various numbers of snapshots, and the evaluation results indicated that the 2D-MUSIC with the proposed pre-processing technique is approximately three times faster than the conventional 2D-MUSIC.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 51 ◽  
Author(s):  
Bong-seok Kim ◽  
Sangdong Kim ◽  
Youngseok Jin ◽  
Jonghun Lee

A low-complexity joint range and Doppler frequency-modulated continuous wave (FMCW) radar algorithm based on the number of targets is proposed in this paper. This paper introduces two low-complexity FMCW radar algorithms, that is, region of interest (ROI)-based and partial discrete Fourier transform (DFT)-based algorithms. We find the low-complexity condition of each algorithm by analyzing the complexity of these algorithms. From this analysis, it is found that the number of targets is an important factor in determining complexity. Based on this result, the proposed algorithm selects a low-complexity algorithm between two algorithms depending the estimated number of targets and thus achieves lower complexity compared two low-complexity algorithms introduced. The experimental results using real FMCW radar systems show that the proposed algorithm works well in a real environment. Moreover, central process unit time and count of float pointing are shown as a measure of complexity.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 608 ◽  
Author(s):  
Bong-seok Kim ◽  
Youngseok Jin ◽  
Sangdong Kim ◽  
Jonghun Lee

This paper proposes a low-complexity frequency-modulated continuous wave (FMCW) surveillance radar algorithm using random dual chirps in order to overcome the blind-speed problem and reduce the computational complexity. In surveillance radar algorithm, the most widely used moving target indicator (MTI) algorithm is proposed to effectively remove clutter. However, the MTI algorithm has a so-called ‘blind-speed problem’ that cannot detect a target of a specific velocity. In this paper, we try to solve the blind-speed problem of MTI algorithm by randomly selecting two beat signals selected for MTI for each frame. To further reduce the redundant complexity, the proposed algorithm first performs one-dimensional fast Fourier transform (FFT) for range detection and performs multidimensional FFT only when it is determined that a target exists at each frame. The simulation results show that despite low complexity, the proposed algorithm detects moving targets well by avoiding the problem of blind speed. Furthermore, the effectiveness of the proposed algorithm was verified by performing an experiment using the FMCW radar system in a real environment.


Author(s):  
Jamiiru Luttamaguzi ◽  
Akbar Eslami ◽  
Dwayne M. Brooks ◽  
Ehsan Sheybani ◽  
Giti Javidi ◽  
...  

This paper describes a method for simulating Frequency-Modulated Continuous-Wave (FMCW) radar. The developments presented target classroom lectures and can form the basis of student projects. Computational analysis and simulation are critical elements of science and engineering education in which students need to acquire these competencies. FMCW radar system simulations are an example of a real-world application, invested in rich mathematical/physical content that exercise these competencies. Unlike conventional radars that operate in the time domain, FMCW radars operate in the frequency domain. Spectral and phase analyses are required to infer range and the range resolved velocity of meteorological targets such as rain or drizzle. Hence to proceed with simulations, students are first introduced to signals processing topics such as discretization and sampling of signals, Fourier Transforms, Z-transforms, and filters. Computations and the display of results are subsequently performed using Elanix System Vue and Matlab software. To aid the interpretation of the results, a brief description of FMCW physical principles of operation is provided. The computational technique is general and efficient, allowing the range-resolved radial velocity component of precipitation to be computed in real-time. Simulations of range are in excellent agreement with field test measurements of experimental, operational X-band radar currently being evaluated at NASA Goddard Spaceflight Center while computations of the range-resolved velocity component of precipitation agree with the setup conditions of the simulations.


Sign in / Sign up

Export Citation Format

Share Document