Secure Health Monitoring in the Cloud Using Homomorphic Encryption

Author(s):  
Scott Ames ◽  
Muthuramakrishnan Venkitasubramaniam ◽  
Alex Page ◽  
Ovunc Kocabas ◽  
Tolga Soyata

Extending cloud computing to medical software, where the hospitals rent the software from the provider sounds like a natural evolution for cloud computing. One problem with cloud computing, though, is ensuring the medical data privacy in applications such as long term health monitoring. Previously proposed solutions based on Fully Homomorphic Encryption (FHE) completely eliminate privacy concerns, but are extremely slow to be practical. Our key proposition in this paper is a new approach to applying FHE into the data that is stored in the cloud. Instead of using the existing circuit-based programming models, we propose a solution based on Branching Programs. While this restricts the type of data elements that FHE can be applied to, it achieves dramatic speed-up as compared to traditional circuit-based methods. Our claims are proven with simulations applied to real ECG data.

Author(s):  
Scott Ames ◽  
Muthuramakrishnan Venkitasubramaniam ◽  
Alex Page ◽  
Ovunc Kocabas ◽  
Tolga Soyata

Extending cloud computing to medical software, where the hospitals rent the software from the provider sounds like a natural evolution for cloud computing. One problem with cloud computing, though, is ensuring the medical data privacy in applications such as long term health monitoring. Previously proposed solutions based on Fully Homomorphic Encryption (FHE) completely eliminate privacy concerns, but are extremely slow to be practical. Our key proposition in this paper is a new approach to applying FHE into the data that is stored in the cloud. Instead of using the existing circuit-based programming models, we propose a solution based on Branching Programs. While this restricts the type of data elements that FHE can be applied to, it achieves dramatic speed-up as compared to traditional circuit-based methods. Our claims are proven with simulations applied to real ECG data.


2016 ◽  
pp. 751-768
Author(s):  
Övünç Kocabaş ◽  
Tolga Soyata

Transitioning US healthcare into the digital era is necessary to reduce operational costs at Healthcare Organizations (HCO) and provide better diagnostic tools for healthcare professionals by making digital patient data available in a timely fashion. Such a transition requires that the Personal Health Information (PHI) is protected in three different phases of the manipulation of digital patient data: 1) Acquisition, 2) Storage, and 3) Computation. While being able to perform analytics or using such PHI for long-term health monitoring can have significant positive impacts on the quality of healthcare, securing PHI in each one of these phases presents unique challenges in each phase. While established encryption techniques, such as Advanced Encryption Standard (AES), can secure PHI in Phases 1 (acquisition) and 2 (storage), they can only assure secure storage. Assuring the data privacy in Phase 3 (computation) is much more challenging, since there exists no method to perform computations, such as analytics and long-term health monitoring, on encrypted data efficiently. In this chapter, the authors study one emerging encryption technique, called Fully Homomorphic Encryption (FHE), as a candidate to perform secure analytics and monitoring on PHI in Phase 3. While FHE is in its developing stages and a mainstream application of it to general healthcare applications may take years to be established, the authors conduct a feasibility study of its application to long-term patient monitoring via cloud-based ECG data acquisition through existing ECG acquisition devices.


2020 ◽  
pp. 93-125
Author(s):  
Ovunc Kocabas ◽  
Tolga Soyata

Personal health monitoring tools, such as commercially available wireless ECG patches, can significantly reduce healthcare costs by allowing patient monitoring outside the healthcare organizations. These tools transmit the acquired medical data into the cloud, which could provide an invaluable diagnosis tool for healthcare professionals. Despite the potential of such systems to revolutionize the medical field, the adoption of medical cloud computing in general has been slow due to the strict privacy regulations on patient health information. We present a novel medical cloud computing approach that eliminates privacy concerns associated with the cloud provider. Our approach capitalizes on Fully Homomorphic Encryption (FHE), which enables computations on private health information without actually observing the underlying data. For a feasibility study, we present a working implementation of a long-term cardiac health monitoring application using a well-established open source FHE library.


Author(s):  
Ovunc Kocabas ◽  
Tolga Soyata

Personal health monitoring tools, such as commercially available wireless ECG patches, can significantly reduce healthcare costs by allowing patient monitoring outside the healthcare organizations. These tools transmit the acquired medical data into the cloud, which could provide an invaluable diagnosis tool for healthcare professionals. Despite the potential of such systems to revolutionize the medical field, the adoption of medical cloud computing in general has been slow due to the strict privacy regulations on patient health information. We present a novel medical cloud computing approach that eliminates privacy concerns associated with the cloud provider. Our approach capitalizes on Fully Homomorphic Encryption (FHE), which enables computations on private health information without actually observing the underlying data. For a feasibility study, we present a working implementation of a long-term cardiac health monitoring application using a well-established open source FHE library.


Author(s):  
Övünç Kocabaş ◽  
Tolga Soyata

Transitioning US healthcare into the digital era is necessary to reduce operational costs at Healthcare Organizations (HCO) and provide better diagnostic tools for healthcare professionals by making digital patient data available in a timely fashion. Such a transition requires that the Personal Health Information (PHI) is protected in three different phases of the manipulation of digital patient data: 1) Acquisition, 2) Storage, and 3) Computation. While being able to perform analytics or using such PHI for long-term health monitoring can have significant positive impacts on the quality of healthcare, securing PHI in each one of these phases presents unique challenges in each phase. While established encryption techniques, such as Advanced Encryption Standard (AES), can secure PHI in Phases 1 (acquisition) and 2 (storage), they can only assure secure storage. Assuring the data privacy in Phase 3 (computation) is much more challenging, since there exists no method to perform computations, such as analytics and long-term health monitoring, on encrypted data efficiently. In this chapter, the authors study one emerging encryption technique, called Fully Homomorphic Encryption (FHE), as a candidate to perform secure analytics and monitoring on PHI in Phase 3. While FHE is in its developing stages and a mainstream application of it to general healthcare applications may take years to be established, the authors conduct a feasibility study of its application to long-term patient monitoring via cloud-based ECG data acquisition through existing ECG acquisition devices.


Author(s):  
D. N. Kartheek ◽  
Bharath Bhushan

The inherent features of internet of things (IoT) devices, like limited computational power and storage, lead to a novel platform to efficiently process data. Fog computing came into picture to bridge the gap between IoT devices and data centres. The main purpose of fog computing is to speed up the computing processing. Cloud computing is not feasible for many IoT applications; therefore, fog computing is a perfect alternative. Fog computing is suitable for many IoT services as it has many extensive benefits such as reduced latency, decreased bandwidth, and enhanced security. However, the characteristics of fog raise new security and privacy issues. The existing security and privacy measures of cloud computing cannot be directly applied to fog computing. This chapter gives an overview of current security and privacy concerns, especially for the fog computing. This survey mainly focuses on ongoing research, security challenges, and trends in security and privacy issues for fog computing.


2021 ◽  
Vol 3 ◽  
Author(s):  
Deborah Lupton

Self-tracking technologies and practices offer ways of generating vast reams of personal details, raising questions about how these data are revealed or exposed to others. In this article, I report on findings from an interview-based study of long-term Australian self-trackers who were collecting and reviewing personal information about their bodies and other aspects of their everyday lives. The discussion focuses on the participants' understandings and practices related to sharing their personal data and to data privacy. The contextual elements of self-tracked sharing and privacy concerns were evident in the participants' accounts and were strongly related to ideas about why and how these details should be accessed by others. Sharing personal information from self-tracking was largely viewed as an intimate social experience. The value of self-tracked data to contribute to close face-to-face relationships was recognized and related aspects of social privacy were identified. However, most participants did not consider the possibilities that their personal information could be distributed well-beyond these relationships by third parties for commercial purposes (or what has been termed “institutional privacy”). These findings contribute to a more-than-digital approach to personal data sharing and privacy practices that recognizes the interplay between digital and non-digital practices and contexts. They also highlight the relational and social dimensions of self-tracking and concepts of data privacy.


10.29007/mpfc ◽  
2019 ◽  
Author(s):  
Oluwaseyi Ogundele ◽  
Liezel Cilliers

The market for wearable devices that can be used for sustained health monitoring purposes is continuously growing within the healthcare sec- tor. However, to function effectively, these devices must collect a large amount of data from the users. There are privacy concerns that may inhibit the behavioural intention of overweight adult to use wearable de- vices for health monitoring in the long term. This study examined the privacy factors influencing the behavioural intention of overweight adult to make use of wearable devices of sustained health monitoring. The study made use of a qualitative research approach with an inter- view design. A purposive sampling technique was used to select and interview twenty overweight adults (aged 18-59 years) who are using wearable devices in East London, South Africa. The Expectation Confirmation Model (ECM) framework was adopted as the underlying re- search theory in this study. Thematic analysis was used to analyse the data provided by participants. The results found that there were 4 levels of privacy concerns among users. Some users were very concerned that their data was collected by the device manufacturing, while others had not concern at all. Some users had privacy concerns, but did not think that the data collected would be useful to a third party and finally some users did have privacy concerns, but indicated that the benefit of using a wearable device outweighed their concerns and they would continue to use the device. The recommendation of the study is that users must educate themselves about what data is collected and how it will be used by third parties.


2021 ◽  
Vol 13 (11) ◽  
pp. 2221
Author(s):  
Munirah Alkhelaiwi ◽  
Wadii Boulila ◽  
Jawad Ahmad ◽  
Anis Koubaa ◽  
Maha Driss

Satellite images have drawn increasing interest from a wide variety of users, including business and government, ever since their increased usage in important fields ranging from weather, forestry and agriculture to surface changes and biodiversity monitoring. Recent updates in the field have also introduced various deep learning (DL) architectures to satellite imagery as a means of extracting useful information. However, this new approach comes with its own issues, including the fact that many users utilize ready-made cloud services (both public and private) in order to take advantage of built-in DL algorithms and thus avoid the complexity of developing their own DL architectures. However, this presents new challenges to protecting data against unauthorized access, mining and usage of sensitive information extracted from that data. Therefore, new privacy concerns regarding sensitive data in satellite images have arisen. This research proposes an efficient approach that takes advantage of privacy-preserving deep learning (PPDL)-based techniques to address privacy concerns regarding data from satellite images when applying public DL models. In this paper, we proposed a partially homomorphic encryption scheme (a Paillier scheme), which enables processing of confidential information without exposure of the underlying data. Our method achieves robust results when applied to a custom convolutional neural network (CNN) as well as to existing transfer learning methods. The proposed encryption scheme also allows for training CNN models on encrypted data directly, which requires lower computational overhead. Our experiments have been performed on a real-world dataset covering several regions across Saudi Arabia. The results demonstrate that our CNN-based models were able to retain data utility while maintaining data privacy. Security parameters such as correlation coefficient (−0.004), entropy (7.95), energy (0.01), contrast (10.57), number of pixel change rate (4.86), unified average change intensity (33.66), and more are in favor of our proposed encryption scheme. To the best of our knowledge, this research is also one of the first studies that applies PPDL-based techniques to satellite image data in any capacity.


Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 135-142 ◽  
Author(s):  
Zhaoe Min ◽  
Geng Yang ◽  
Jingqi Shi

AbstractIn order to protect data privacy whilst allowing efficient access to data in multi-nodes cloud environments, a parallel homomorphic encryption (PHE) scheme is proposed based on the additive homomorphism of the Paillier encryption algorithm. In this paper we propose a PHE algorithm, in which plaintext is divided into several blocks and blocks are encrypted with a parallel mode. Experiment results demonstrate that the encryption algorithm can reach a speed-up ratio at about 7.1 in the MapReduce environment with 16 cores and 4 nodes.


Sign in / Sign up

Export Citation Format

Share Document