Security Issues in Fog Computing for Internet of Things

Author(s):  
D. N. Kartheek ◽  
Bharath Bhushan

The inherent features of internet of things (IoT) devices, like limited computational power and storage, lead to a novel platform to efficiently process data. Fog computing came into picture to bridge the gap between IoT devices and data centres. The main purpose of fog computing is to speed up the computing processing. Cloud computing is not feasible for many IoT applications; therefore, fog computing is a perfect alternative. Fog computing is suitable for many IoT services as it has many extensive benefits such as reduced latency, decreased bandwidth, and enhanced security. However, the characteristics of fog raise new security and privacy issues. The existing security and privacy measures of cloud computing cannot be directly applied to fog computing. This chapter gives an overview of current security and privacy concerns, especially for the fog computing. This survey mainly focuses on ongoing research, security challenges, and trends in security and privacy issues for fog computing.

Author(s):  
S. R. Mani Sekhar ◽  
Sharmitha S. Bysani ◽  
Vasireddy Prabha Kiranmai

Security and privacy issues are the challenging areas in the field of internet of things (IoT) and fog computing. IoT and fog has become an involving technology allowing major changes in the field of information systems and communication systems. This chapter provides the introduction of IoT and fog technology with a brief explanation of how fog is overcoming the challenges of cloud computing. Thereafter, the authors discuss the different security and privacy issues and its related solutions. Furthermore, they present six different case studies which will help the reader to understand the platform of IoT in fog.


Author(s):  
Nurul Fatini Azhar ◽  
Qi Jie Ngoo ◽  
Tae Hyun Kim ◽  
Kohei Dozono ◽  
Fatima tuz Zahra

Communication between devices has transitioned from wired to unwired. Wireless networks have been in use widely around the globe since the advent of smartphones, IoT devices and other technologies that are compatible with wireless mode of communication. At the same time security issues have also increased in such communication methods. The aim of this paper is to propose security and privacy issues of the wireless networks and present them through comprehensive surveys. In context of security issues, there are 2 typical DDoS attacks - HTTP flood and SYN flood. Other than DDoS attacks, there are several other threats to wireless networks. One of the most prevalent include security issues in Internet of Things. In terms of privacy issues in a wireless network, location-based applications, individual data, cellular network and V2G (Vehicle to Grid) network are surveyed. The survey is hosted using questionnaire and responses of 70 participants is recorded. It is observed from the survey results that many groups of people lack the knowledge of security and privacy of wireless technologies and networks despite their increased use, however, students are relatively more aware and have strong knowledge of those issues. It is concluded from the results that an effective solution to these problems can be hosting campaigns for spreading the security and privacy laws to help the groups of people who are lagging behind in this domain of knowledge become more aware. A unique solution is also presented to overcome the security issues which include implementation of detection and mitigation techniques, implementing Blockchain in the IoT devices and implementing fog computing solutions. The unique solutions to overcome the privacy issues are proposed in the form of a privacy approach from the LBS server between pairs of users to increase the implementation of DSPM and blockchain as a solution.


Internet-of-Things (IoT) has been considered as a fundamental part of our day by day existence with billions of IoT devices gathering information remotely and can interoperate within the current Internet framework. Fog computing is nothing but cloud computing to the extreme of network security. It provides computation and storage services via CSP (Cloud Service Provider) to end devices in the Internet of Things (IoT). Fog computing allows the data storing and processing any nearby network devices or nearby cloud endpoint continuum. Using fog computing, the designer can reduce the computation architecture of the IoT devices. Unfortunitily, this new paradigm IoT-Fog faces numerous new privacy and security issues, like authentication and authorization, secure communication, information confidentiality. Despite the fact that the customary cloud-based platform can even utilize heavyweight cryptosystem to upgrade security, it can't be performed on fog devices drectly due to reseource constraints. Additionally, a huge number of smart fog devices are fiercely disseminated and situated in various zones, which expands the danger of being undermined by some pernicious gatherings. Trait Based Encryption (ABE) is an open key encryption conspire that enables clients to scramble and unscramble messages dependent on client qualities, which ensures information classification and hearty information get to control. Be that as it may, its computational expense for encryption and unscrambling stage is straightforwardly corresponding to the multifaceted nature of the arrangements utilized. The points is to assess the planning, CPU burden, and memory burden, and system estimations all through each phase of the cloud-to-things continuum amid an analysis for deciding highlights from a finger tapping exercise for Parkinson's Disease patients. It will be appeared there are confinements to the proposed testbeds when endeavoring to deal with upwards of 35 customers at the same time. These discoveries lead us to a proper conveyance of handling the leaves the Intel NUC as the most suitable fog gadget. While the Intel Edison and Raspberry Pi locate a superior balance at in the edge layer, crossing over correspondence conventions and keeping up a self-mending network topology for "thing" devices in the individual territory organize.


Author(s):  
S. R. Mani Sekhar ◽  
Sharmitha S. Bysani ◽  
Vasireddy Prabha Kiranmai

Security and privacy issues are the challenging areas in the field of internet of things (IoT) and fog computing. IoT and fog has become an involving technology allowing major changes in the field of information systems and communication systems. This chapter provides the introduction of IoT and fog technology with a brief explanation of how fog is overcoming the challenges of cloud computing. Thereafter, the authors discuss the different security and privacy issues and its related solutions. Furthermore, they present six different case studies which will help the reader to understand the platform of IoT in fog.


2022 ◽  
pp. 148-175
Author(s):  
Anish Khan ◽  
Dragan Peraković

The internet of things is a cutting-edge technology that is vulnerable to all sorts of fictitious solutions. As a new phase of computing emerges in the digital world, it intends to produce a huge number of smart gadgets that can host a wide range of applications and operations. IoT gadgets are a perfect target for cyber assaults because of their wide dispersion, availability/accessibility, and top-notch computing power. Furthermore, as numerous IoT devices gather and investigate private data, they become a gold mine for hostile actors. Hence, the matter of fact is that security, particularly the potential to diagnose compromised nodes, as well as the collection and preservation of testimony of an attack or illegal activity, have become top priorities. This chapter delves into the timeline and the most challenging security and privacy issues that exist in the present scenario. In addition to this, some open issues and future research directions are also discussed.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8226
Author(s):  
Ahmed M. Alwakeel

With the advancement of different technologies such as 5G networks and IoT the use of different cloud computing technologies became essential. Cloud computing allowed intensive data processing and warehousing solution. Two different new cloud technologies that inherit some of the traditional cloud computing paradigm are fog computing and edge computing that is aims to simplify some of the complexity of cloud computing and leverage the computing capabilities within the local network in order to preform computation tasks rather than carrying it to the cloud. This makes this technology fits with the properties of IoT systems. However, using such technology introduces several new security and privacy challenges that could be huge obstacle against implementing these technologies. In this paper, we survey some of the main security and privacy challenges that faces fog and edge computing illustrating how these security issues could affect the work and implementation of edge and fog computing. Moreover, we present several countermeasures to mitigate the effect of these security issues.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ado Adamou Abba Ari ◽  
Olga Kengni Ngangmo ◽  
Chafiq Titouna ◽  
Ousmane Thiare ◽  
Kolyang ◽  
...  

The Cloud of Things (IoT) that refers to the integration of the Cloud Computing (CC) and the Internet of Things (IoT), has dramatically changed the way treatments are done in the ubiquitous computing world. This integration has become imperative because the important amount of data generated by IoT devices needs the CC as a storage and processing infrastructure. Unfortunately, security issues in CoT remain more critical since users and IoT devices continue to share computing as well as networking resources remotely. Moreover, preserving data privacy in such an environment is also a critical concern. Therefore, the CoT is continuously growing up security and privacy issues. This paper focused on security and privacy considerations by analyzing some potential challenges and risks that need to be resolved. To achieve that, the CoT architecture and existing applications have been investigated. Furthermore, a number of security as well as privacy concerns and issues as well as open challenges, are discussed in this work.


Internet of things (IoT) is an emerging concept which aims to connect billions of devices with each other anytime regardless of their location. Sadly, these IoT devices do not have enough computing resources to process huge amount of data. Therefore, Cloud computing is relied on to provide these resources. However, cloud computing based architecture fails in applications that demand very low and predictable latency, therefore the need for fog computing which is a new paradigm that is regarded as an extension of cloud computing to provide services between end users and the cloud user. Unfortunately, Fog-IoT is confronted with various security and privacy risks and prone to several cyberattacks which is a serious challenge. The purpose of this work is to present security and privacy threats towards Fog-IoT platform and discuss the security and privacy requirements in fog computing. We then proceed to propose an Intrusion Detection System (IDS) model using Standard Deep Neural Network's Back Propagation algorithm (BPDNN) to mitigate intrusions that attack Fog-IoT platform. The experimental Dataset for the proposed model is obtained from the Canadian Institute for Cybersecurity 2017 Dataset. Each instance of the attack in the dataset is separated into separate files, which are DoS (Denial of Service), DDoS (Distributed Denial of Service), Web Attack, Brute Force FTP, Brute Force SSH, Heartbleed, Infiltration and Botnet (Bot Network) Attack. The proposed model is trained using a 3-layer BP-DNN


2021 ◽  
Author(s):  
Ramla Humayun

Review on Cloud-Computing and the security and privacy issues related with it.


Sign in / Sign up

Export Citation Format

Share Document