Virtual Collaborative Design

Author(s):  
Aybüke Aurum ◽  
Oya Demirbilek

As we enter the third millennium, many organizations are forced to constantly pursue new strategies to differentiate themselves from their competitors. Examples include offering customers streams of new products and services, as well as continuously seeking to improve productivity, services and the effectiveness of product design, development and manufacturing processes. Consequently, new concepts, approaches and tools are emerging quickly as the globalization trend expands across the world. Product complexity, pressures to reduce production cycle time, the need for stakeholders’ contributions and multinational company as well as consumer requirements create the demand for sophisticated multi-designer collaborative virtual environments where product design can be shared and acted upon (Kunz, Christiansen, Cohen, Jin, & Levitt, 1998; Ragusa & Bochanek, 2001; Anderson, Esser & Interrante, 2003). Thus, researchers and practitioners recognize that collaboration is an essential aspect of contemporary, professional product design and development activities. The design process is collaborative by nature. Collaborative design fosters participation of stakeholders in any form during the design process. The design of a successful product is dependent on integrating information and experiences from a number of different knowledge domains. These domains include consumer (end-user) requirements, industrial designers’ professional design skills as well as manufacturers’ needs. This results in a product that performs at a functional as well as aesthetic level and that can be manufactured by the right process at the right price. End-user involvement is essential to product design, since products that do not achieve consumer satisfaction or meet consumer needs are doomed to fail (Schultz, 2001). Accurate understanding of user needs is an essential aspect in developing commercially successful products (Achilladelis, 1971). Hence, it is very important for industrial designers to gather the end-users’ needs and incorporate them into their designs. The involvement of manufacturers in the initial stages of the domestic product design process can lead to a dramatic reduction in a product’s development lifecycle time, also facilitating the coordination of the purchasing and engineering functions (Bochanek & Ragusa, 2001; Demirbilek, 2001). The increasing complexity of artifacts and the globalization of product development are changing research methodologies and techniques. A prime example of this includes the application of a virtual collaborative design environment (VCDE) for product design and manufacturing. This article focuses on the concept of virtual collaborative design. It describes a research effort to investigate cross-cultural collaboration in product development using online applications for domestic product design. The aim of this research is to investigate issues related to the virtual collaborative design (VCD) process, and to bring an understanding of stakeholder needs during the collaborative design process as well as to improve the relationships between end-users, designers and manufacturers. The article presents findings based on a survey study conducted with four different potential stakeholders: representatives of consumers, software designers, industrial designers and manufacturers.

Author(s):  
Hugh E. McLoone

Creativity can be viewed as a chaotic or unplanned activity. The product design process often may seem like chaos as well, but this is not inevitable. Designers and human factors/ergonomics (HF/E) professionals follow a clear design process with phases, levels, and methods for creation of successful new products. Research methods are offered at the right time during this process to generate new concepts and to evaluate designs. We work together to create innovative, valued, and successful products via a generative, iterative, evaluative process.


2013 ◽  
Vol 712-715 ◽  
pp. 2888-2893
Author(s):  
Hai Qiang Liu ◽  
Ming Lv

In order to realize information sharing and interchange of complex product multidisciplinary collaborative design (MCD) design process and resources. The Process integrated system control of product multidisciplinary collaborative design was analyzed firstly in this paper, then design process of complex product for supporting multidisciplinary collaborative was introduced, a detailed description is given of the organization structure and modeling process of MCD-oriented Integration of Product Design Meta-model ; and concrete implement process of process integrated system control method was introduced to effectively realize information sharing and interchange between product design process and resources.


Author(s):  
Mohammed A. Azam ◽  
William P. Holmes

Abstract Research has been carried out at Coventry University Centre for Integrated Design on the concept design process and it is funded by the Coventry University Research Fund. An experiment, simulating product design in industry, was conducted by concept designers which were, in turn, acted by student industrial designers and student engineering designers. In general the product design process is a sequential process. The first part of the process is the conceptual phase. This is followed by the engineering design phases which include all the manufacturing information. In this case the downstream engineering design focuses on designs for manufacture and process selection. Information on the requirements of conceptual designers in these areas was collected from these experiments. The information is ultimately to be incorporated into rules in a knowledge base which can be readily accessed by the industrial designer during concept development via a CAD system.


Author(s):  
Zhiqiang Chen ◽  
Zahed Siddique

The emergence of computer and network technology has provided opportunities for researchers to construct and build systems to support dynamic, real-time, and collaborative engineering design in a concurrent manner. This paper provides an understanding of the product design in a distributed environment where designers are in different geographic locations and are required to be involved in the design process to ensure successful product design. A design process model that captures the major interactions among stakeholders is presented, based on the observation of cooperation and collaboration. The stakeholders’ interactions are divided into activity and system level to distinguish the interactions in group design activities and design perspective evolution. An initial computer implementation of the design model is presented. The design system consists of a set of tools associated with design and a management system to facilitate distributed designers to support various design activities, especially conceptual design. Our research emphasis of design collaboration in this paper is: (i) Model a Cooperative-collaborative design process; (ii) Support synchronized design activities; and (iii) Structure the complex relations of various design perspectives from engineering disciplines.


1988 ◽  
Vol 32 (6) ◽  
pp. 420-424 ◽  
Author(s):  
Kamran Abedini

In order to know the pattern of actual application of human factors criteria by industrial designers an experiment was conducted by asking 87 students of industrial design to evaluate a CAD workstation after completing a course in “human factors in design”. The guidelines chosen for the evaluation were those related to design of visual displays, controls and workstation layout on the CAD system. Since the main objective was to see how many of the principles had become part of their “common sense” they were asked to evaluate the equipment without any reference to any books/notes. The subject's responses were compared with the human factors guidelines using a Chi-square test (0.05 significance). The results pointed out that industrial designers readily accepted general criteria such as visibility, operability, and accessibility but interpretability of the display was frequently unrecognized. Such information could be used by industrial designers and human factors experts to improve their cooperation in the design process and thus increase the acceptance and marketability of the product.


Author(s):  
Boris Povlotsky

This paper illustrates some of author's views of the ergonomics implementation challenges within diverse industries, manufacturing, office environments, and machinery/product design. We intend to analyze and review the roots of problems from different perspectives and recommend which ergonomics approaches are likely to succeed or fail. Most importantly it is imperative to find the actual cause(s) of obstacle(s) - problem(s) before looking for appropriate ergonomics solution(s) and acceptance of ergonomics innovations by end users. The presented material is based on the substantial authors' experiences in human factors engineering and ergonomics, in industry and academia and in various countries. Our objective is to present an integrated view of ergonomics within corporate bureaucracy in the contexts of favorable and unfavorable environments - factors that lead to success or failure.


Author(s):  
Bo T. Christensen

AbstractTwo studies tested whether introducing images to designers during the design process lead to more useful design solutions as evaluated by the end users’ willingness to use the final design. It was hypothesized based on theories in cognitive science and design that there were at least two paths from images to usefulness. One path concerns analogically transferring within-domain properties to the design solution. The other path concerns mentally simulating end-user characteristics and preferences and inclusion of the user in the resulting design. Study 1 supported that random images led to increased outcome usefulness, and supported both hypothesized paths, by using within-domain products and end-user images as input. Study 2 showed that the image categories competed for attention, and that the within-domain product stimuli attracted the most attention and was considered the most inspirational to the designers. The practical use of the technique may lead to only marginally original products perhaps limiting its applicability to incremental innovation.


2012 ◽  
Vol 224 ◽  
pp. 367-370
Author(s):  
Dong Fang Hu ◽  
Deng Kun Li

The networked collaborative design has been the development trend of modern product design, the application of which has been constrained by the data access conflicts. This paper introduced the networked collaborative design method of product based on the Vault, and network collaborative function of Inventor by using the project management. Under the assistance of the Vault, we had solved the key technology of access conflict of networked collaborative design, and realized the remote design between the members of efficient coordination. In this way, we had optimized the design ideas, shortened the product development cycles and improved productivity.


2010 ◽  
Vol 118-120 ◽  
pp. 717-721
Author(s):  
Li Yun Yan ◽  
Zong Bin Li ◽  
Xiao Chun Yang

. Successful collaborative product development depends on the ability to effectively manage and share engineering knowledge and experience throughout the entire development process. This paper presents a distributed heterogeneous engineering knowledge management approach for the practice of collaborative product design. Firstly, a XTM based heterogeneous knowledge integration model in collaborative product design is proposed; Then, a knowledge management framework in collaborative design process is developed; Finally, a knowledge management system in collaborative design is constructed.


2021 ◽  
Author(s):  
Jayesh Parmar

Diagramming languages are heavily used in design and system analysis. Different languages have varying impacts on the effectiveness of designers. The author believes that there is no appropriate diagramming tool that is of substantial benefit to designers, especially in the early, pre-geometry stages of product development. A new tool, design schematics (DS), is introduced to fulfill this need. The general benefits of diagramming are outlined and the potential of diagramming tools is explored. Advantages and disadvantages of some existing diagramming methods are discussed. Analysis of diagramming methods motivates the development of DS. DS is consistent with the generic design process developed by Salustri. Several interrelated examples demonstrate how DS can capture important information during design stages. A detailed example of a coffee maker is carried out. It is executed as if the author were actually designing a coffee maker. Interrelated diagrams of the design highlight how DS helps in designing during the early stages. Computer support for development and full exploitation of DS is needed. The author believes that DS can be of great benefit to practising engineers. While there is not yet any quantitative data by which DS can be evaluated, there is anecdotal evidence suggesting that the tool has potential to be of benefit in design areas.


Sign in / Sign up

Export Citation Format

Share Document