A Web-Based 3D Real Time Oscilloscope Experiment

Author(s):  
Chi Chung Ko ◽  
Chang Dong Cheng

In this final chapter, we will describe the use of Java 3D as a visualization technology in the development of a Web-based 3D real time oscilloscope experiment. Developed and launched under a research project at the National University of Singapore, this application enables students to carry out a physical electronic experiment that involves the use of an actual oscilloscope, a signal generator and a circuit board remotely through the Internet (Ko 2000, and 2001). Specifically, this system addresses 3D visualization schemes on the client side (Bund, 2005, Hobona, 2006, Liang, 2006, Ueda, 2006, Wang, 2006), as well as Web-based real time control and 3D-based monitoring between the client and server (Nielsen, 2006; Qin, Harrison, West, & Wright, 2004). The control of the various instruments are carried out in real time through the use of a Java 3D based interface on the client side, with the results of the experiment being also reflected or displayed appropriately on 3D instruments in the same interface.

Author(s):  
Yuliang Qiao ◽  
Guo-ping Liu ◽  
Geng Zheng ◽  
Wenshan Hu

2008 ◽  
Vol 41 (2) ◽  
pp. 12643-12648 ◽  
Author(s):  
W.S. Hu ◽  
G.P. Liu ◽  
D. Rees ◽  
Y.L. Qiao

Author(s):  
Bo Chen ◽  
Wenjia Liu ◽  
Jinjiang Wang ◽  
Justin Slepak

This paper presents a Web-based data inquiry and real-time control of sensor’s operating mode for structural health monitoring sensor networks. The main objective of the presented system is to provide a Web interface for real-time sensor data visualization, sensor-level damage diagnosis, and control of sensor’s operating mode. Web services are available both on distributed sensor nodes and a data repository machine. Users can request Web pages hosted on the sensor nodes or the data repository machine by specifying corresponding sensor IDs. The ability of directly accessing data on sensor nodes via internet allows users to monitor a structure’s performance in a timely manner. The damage diagnosis algorithms implemented on the sensor nodes help users to assess the structural health conditions without the need of transmitting sensor data to a central data station. The presented system also provides the capability of dynamically changing sensor’s operating mode through the Web interface. This feature greatly enhances the flexibility of the system to accommodate different sensing needs and achieve a long lifespan. The system has been tested in the Laboratory to validate its capabilities.


1995 ◽  
Vol 34 (05) ◽  
pp. 475-488
Author(s):  
B. Seroussi ◽  
J. F. Boisvieux ◽  
V. Morice

Abstract:The monitoring and treatment of patients in a care unit is a complex task in which even the most experienced clinicians can make errors. A hemato-oncology department in which patients undergo chemotherapy asked for a computerized system able to provide intelligent and continuous support in this task. One issue in building such a system is the definition of a control architecture able to manage, in real time, a treatment plan containing prescriptions and protocols in which temporal constraints are expressed in various ways, that is, which supervises the treatment, including controlling the timely execution of prescriptions and suggesting modifications to the plan according to the patient’s evolving condition. The system to solve these issues, called SEPIA, has to manage the dynamic, processes involved in patient care. Its role is to generate, in real time, commands for the patient’s care (execution of tests, administration of drugs) from a plan, and to monitor the patient’s state so that it may propose actions updating the plan. The necessity of an explicit time representation is shown. We propose using a linear time structure towards the past, with precise and absolute dates, open towards the future, and with imprecise and relative dates. Temporal relative scales are introduced to facilitate knowledge representation and access.


Sign in / Sign up

Export Citation Format

Share Document