Biosensors

Author(s):  
Sourabh Bansal

Biosensor1 is a diagnostic tool in which a biological element is used to sense a chemical and its amount in a given sample, and then the sensed information (i.e., data) is transferred to a transducer which converts this signal to electrical signal. In this way, it transforms a biological response into an electrical signal. It also detects, records, and transmits data generated due to physiological change or any chemicals presence in the area being analyzed. The analysis is accurate and reliable. In other words, biosensor can be termed as a device used in a biological derived sensing element2 integrated with a physiochemical transducer, producing an electrical signal (Turner, 1996). The resulting electrical signal is a measure of the amount of chemical or combination of chemicals being detected. Sometimes Biosensors are referred as the living organisms, which are used as a sensor to detect the environmental change.

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1109
Author(s):  
Varnakavi. Naresh ◽  
Nohyun Lee

A biosensor is an integrated receptor-transducer device, which can convert a biological response into an electrical signal. The design and development of biosensors have taken a center stage for researchers or scientists in the recent decade owing to the wide range of biosensor applications, such as health care and disease diagnosis, environmental monitoring, water and food quality monitoring, and drug delivery. The main challenges involved in the biosensor progress are (i) the efficient capturing of biorecognition signals and the transformation of these signals into electrochemical, electrical, optical, gravimetric, or acoustic signals (transduction process), (ii) enhancing transducer performance i.e., increasing sensitivity, shorter response time, reproducibility, and low detection limits even to detect individual molecules, and (iii) miniaturization of the biosensing devices using micro-and nano-fabrication technologies. Those challenges can be met through the integration of sensing technology with nanomaterials, which range from zero- to three-dimensional, possessing a high surface-to-volume ratio, good conductivities, shock-bearing abilities, and color tunability. Nanomaterials (NMs) employed in the fabrication and nanobiosensors include nanoparticles (NPs) (high stability and high carrier capacity), nanowires (NWs) and nanorods (NRs) (capable of high detection sensitivity), carbon nanotubes (CNTs) (large surface area, high electrical and thermal conductivity), and quantum dots (QDs) (color tunability). Furthermore, these nanomaterials can themselves act as transduction elements. This review summarizes the evolution of biosensors, the types of biosensors based on their receptors, transducers, and modern approaches employed in biosensors using nanomaterials such as NPs (e.g., noble metal NPs and metal oxide NPs), NWs, NRs, CNTs, QDs, and dendrimers and their recent advancement in biosensing technology with the expansion of nanotechnology.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Mercedes Perullini ◽  
Mariano Calcabrini ◽  
Matías Jobbágy ◽  
Sara A. Bilmes

Abstract:The encapsulation of living cells within inorganic silica hydrogels is a promising strategy for the design of biosensors, modular bioreactors, and bioremediation devices, among other interesting applications, attracting scientific and technological interest. These hostguest multifunctional materials (HGFM) combine synergistically specific biologic functions of their guest with those of the host matrix enhancing their performance. Although inorganic immobilization hosts present several advantages over their (bio)polymer-based counterparts in terms of chemical and physical stability, the direct contact of cells with silica precursors during synthesis and the constraints imposed by the inorganic host during operating conditions have proved to influence their biological response. Recently, we proposed an alternative two-step procedure including a pre-encapsulation in biocompatible polymers such as alginates in order to confer protection to the biological guest during the inorganic and more cytotoxic synthesis. By means of this procedure, whole cultures of microorganisms remain confined in small liquid volumes generated inside the inorganic host, providing near conventional liquid culture conditions.Moreover, the fact of protecting the biological guest during the synthesis of the host, allows extending the synthesis parameters beyond biocompatible conditions, tuning the microstructure of the matrix. In turn, the microstructure (porosity at the nanoscale, radius of gyration of particles composing the structure, and fractal dimension of particle clusters) is determinant of macroscopic parameters, such as optical quality and transport properties that govern the encapsulation material’s performance. Here, we review the most interesting applications of the two-step procedure, making special emphasis on the optimization of optical, transport and mechanical properties of the host as well as in the interaction with the guest during operation conditions.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6645 ◽  
Author(s):  
Paolo Bollella ◽  
Evgeny Katz

Biosensors are analytical devices that are able to convert a biological response into an electrical signal [...]


Author(s):  
Aashish Agarwal

A biosensor is a device that is made up of transducer and biological elements [1-3]. The biological elements can be proteins, enzymes or antibodies [1]. The biological elements interact with the analyte which convert the biological response to an electrical signal. So usually biosensor consists of a biological component (acting as a sensor) and an electrical component (for detecting and transmitting the signal). Biosensors have a wide range of applications in different areas of science such as health care industry, clinical analysis and diagnosis of disease and agriculture [4]. In particular, there is a growing interest to prepare bio-sensor using different types of nanomaterials such as gold nanoparticles, carbon nanotubes, quantum dots, etc. [4].In the current proposal, we plan to prepare a low cost protein-sensor using polymeric stimuli-responsive nanoparticles based on diffraction principle. Moreover, this sensor will have a switchable functionality towards pH, temperature and electric field and also can be used with high accuracy of proteins detection based on a simple diffraction principle in the visible region. Since the awareness regarding health and wellbeing is increasing day by day in the global population, the use of biosensors in diagnostics is also simultaneously growing. Thus we believe that our proposed protein sensor based on diffraction principle will also have a popular demand in health care industry. 


2018 ◽  
Vol 202 ◽  
pp. 122-138 ◽  
Author(s):  
Keely Mills ◽  
Christopher H. Vane ◽  
Raquel A. Lopes dos Santos ◽  
Immaculate Ssemmanda ◽  
Melanie J. Leng ◽  
...  

1992 ◽  
Vol 6 ◽  
pp. 204-204
Author(s):  
George R. McGhee

Transgressive-regressive cycles involve environmental change and therefore, under the predictions of the theory of natural selection, biological response is expected. The nature, magnitude, and instrumentation of that response is, however, less well understood and difficult to predict. Generally the magnitude of biological response would be expected to be a direct function of the magnitude of the environmental change produced by alterations in sea level. However, this may not be the case. Moreover, the magnitude of environmental perturbation seen may itself not be a direct function of the magnitude, range, or even rate of sea level rise or fall.Biological responses to transgressive-regressive cycles are highly variable, yet may be empirically demonstrated. Although the reality of faunal changes can be observed, the precise forcing mechanism or mechanisms driving those changes may be hypothetical at best. The observed iterative morphological series seen in shallow water Jurassic ammonites, for example, appear to be produced by a complex interplay of species adaptation to changes in local habitat and response to immigration from oceanic realms, both of which are ultimately driven by relative sea level. Likewise, changes in diversity and species composition in Devonian shallow marine communities appear to be produced by the effect of variable sedimentation rates and shifts in the oxygen minimum zone, both of which also are related to changes in relative sea level.Published onlap-offlap sequence curves, as such, may offer very little to the paleobiologist interested in the evolutionary behavior of marine organisms. Additional geographic and areal data are required if any rigorous quantitative relationship between relative sea level and evolutionary biology is to be formulated. In the Devonian, for example, it can be demonstrated that a total lack of correlation exists between the evolutionary biology of major benthic marine organisms (brachiopods) and relative sea level as projected from onlap-offlap curves. It could be hypothesized that the rate of change of sea level is more important to organisms than relative sea level itself, though most hypotheses concerning the biological effect of sea level are explicitly framed in terms of relative sea level (usually invoking the species-area effect). Again, onlap-offlap curves alone offer little in testing such a rate hypothesis, as it can also be demonstrated that no correlation exists between the derivative of the Devonian relative sea level curve and the evolutionary biology of the Brachiopoda.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3226 ◽  
Author(s):  
Katarzyna Owczarek ◽  
Błażej Kudłak ◽  
Vasil Simeonov ◽  
Zofia Mazerska ◽  
Jacek Namieśnik

Bisphenol A (BPA) is one of the most popular and commonly used plasticizer in the industry. Over the past decade, new chemicals that belong to the bisphenol group have increasingly been used in industrial applications as alternatives to BPA. Nevertheless, information on the combined effects of bisphenol (BP) analogues is insufficient. Therefore, our current study aimed to find the biological response modulations induced by the binary mixtures of BP compounds. We determined the toxicity levels in Microtox and XenoScreen YES/YAS assays for several BP analogs alone, and for their binary mixtures. The results obtained constituted the database for chemometric intelligent data analysis to evaluate the possible interactions occurring in the mixtures. Several chemometric/biophysical models have been used (concentration addition—CA, independent action—IA and polynomial regression calculations) to realize this aim. The best fitting was found for the IA model and even in this description strong evidence for synergistic behaviors (modes of action) of some bisphenol analogue mixtures was demonstrated. Bisphenols A, S, F and FL were proven to be of significant endocrine threat (with respect to XenoScreen YES/YAS assay); thus, their presence in mixtures (including presence in tissues of living organisms) should be most strictly monitored and reported.


2019 ◽  
Vol 8 (4) ◽  
pp. 7947-7951

Biosensor is an analytical device that used to convert a biological response into an electrical signal. While, electroencephalogram (EEG) is a test that measures and records electrical signal from the brain through a metal electrode. Smart home controller using biosensor is a system that allows a communication of human brain and home appliances, microcontroller or computer. The main objective of this project is to design and implement a neuro based switching system control for power socket using biosensor and IoT data visualization, and to analyze system performance in terms of biosensor and IoT performance. To achieve the objective, EEG signal acquired by using a low cost EEG biosensor that is Neurosky Mindflex device. After that, EEG signal was analyzed and classified through Arduino (IDE) serial monitor. Next, classified signal was used to control a real-time home appliance by sending a command to NODEMCU ESP8266. A communication between Neurosky Mindflex device with microcontroller or computer are designed to turn on and off home appliances. Besides biosensor data visualization, home appliances usage can be observed through IoT platform i.e. ThingSpeak via the internet.


Sign in / Sign up

Export Citation Format

Share Document