OWL

Author(s):  
Adélia Gouveia ◽  
Jorge Cardoso

The World Wide Web (WWW) emerged in 1989, developed by Tim Berners-Lee who proposed to build a system for sharing information among physicists of the CERN (Conseil Européen pour la Recherche Nucléaire), the world’s largest particle physics laboratory. Currently, the WWW is primarily composed of documents written in HTML (hyper text markup language), a language that is useful for visual presentation (Cardoso & Sheth, 2005). HTML is a set of “markup” symbols contained in a Web page intended for display on a Web browser. Most of the information on the Web is designed only for human consumption. Humans can read Web pages and understand them, but their inherent meaning is not shown in a way that allows their interpretation by computers (Cardoso & Sheth, 2006). Since the visual Web does not allow computers to understand the meaning of Web pages (Cardoso, 2007), the W3C (World Wide Web Consortium) started to work on a concept of the Semantic Web with the objective of developing approaches and solutions for data integration and interoperability purpose. The goal was to develop ways to allow computers to understand Web information. The aim of this chapter is to present the Web ontology language (OWL) which can be used to develop Semantic Web applications that understand information and data on the Web. This language was proposed by the W3C and was designed for publishing, sharing data and automating data understood by computers using ontologies. To fully comprehend OWL we need first to study its origin and the basic blocks of the language. Therefore, we will start by briefly introducing XML (extensible markup language), RDF (resource description framework), and RDF Schema (RDFS). These concepts are important since OWL is written in XML and is an extension of RDF and RDFS.

Author(s):  
Kevin Curran ◽  
Gary Gumbleton

Tim Berners-Lee, director of the World Wide Web Consortium (W3C), states that, “The Semantic Web is not a separate Web but an extension of the current one, in which information is given well-defined meaning, better enabling computers and people to work in cooperation” (Berners-Lee, 2001). The Semantic Web will bring structure to the meaningful content of Web pages, creating an environment where software agents, roaming from page to page, can readily carry out sophisticated tasks for users. The Semantic Web (SW) is a vision of the Web where information is more efficiently linked up in such a way that machines can more easily process it. It is generating interest not just because Tim Berners-Lee is advocating it, but because it aims to solve the problem of information being hidden away in HTML documents, which are easy for humans to get information out of but are difficult for machines to do so. We will discuss the Semantic Web here.


Author(s):  
Michael Lang

Although its conceptual origins can be traced back a few decades (Bush, 1945), it is only recently that hypermedia has become popularized, principally through its ubiquitous incarnation as the World Wide Web (WWW). In its earlier forms, the Web could only properly be regarded a primitive, constrained hypermedia implementation (Bieber & Vitali, 1997). Through the emergence in recent years of standards such as eXtensible Markup Language (XML), XLink, Document Object Model (DOM), Synchronized Multimedia Integration Language (SMIL) and WebDAV, as well as additional functionality provided by the Common Gateway Interface (CGI), Java, plug-ins and middleware applications, the Web is now moving closer to an idealized hypermedia environment. Of course, not all hypermedia systems are Web based, nor can all Web-based systems be classified as hypermedia (see Figure 1). See the terms and definitions at the end of this article for clarification of intended meanings. The focus here shall be on hypermedia systems that are delivered and used via the platform of the WWW; that is, Web-based hypermedia systems.


Author(s):  
Bhavani Thuraisingham ◽  
Natasha Tsybulnik ◽  
Ashraful Alam

The Semantic Web is essentially a collection of technologies to support machine understandable Web pages as well as Information Interoperability. There has been much progress made on the Semantic Web including standards for eXtensible Markup Language, Resource Description Framework and Onotlogies. However, administration policies and techniques for enforcing them have received little attention. These policies include policies for security, privacy, data quality, integrity, trust and timely information processing. This chapter discusses administration policies for the Semantic Web as well as techniques for enforcing them. In particular, the authors will discuss an approach for ensuring confidentiality, privacy and trust for the Semantic Web. We will also discuss the inference and privacy problems within the context of administration policies.


Author(s):  
Bhavani Thuraisingham ◽  
Natasha Tsybulnik ◽  
Ashraful Alam

The Semantic Web is essentially a collection of technologies to support machine-understandable Web pages as well as Information Interoperability. There has been much progress made on the Semantic Web, including standards for eXtensible Markup Language, Resource Description Framework, and Ontologies. However, administration policies and techniques for enforcing them have received little attention. These policies include policies for security, privacy, data quality, integrity, trust, and timely information processing. This article discusses administration policies for the Semantic Web as well as techniques for enforcing them. In particular, we will discuss an approach for ensuring confidentiality, privacy, and trust for the Semantic Web. We will also discuss the inference and privacy problems within the context of administration policies.


Author(s):  
Kaleem Razzaq Malik ◽  
Tauqir Ahmad

This chapter will clearly show the need for better mapping techniques for Relational Database (RDB) all the way to Resource Description Framework (RDF). This includes coverage of each data model limitations and benefits for getting better results. Here, each form of data being transform has its own importance in the field of data science. As RDB is well known back end storage for information used to many kinds of applications; especially the web, desktop, remote, embedded, and network-based applications. Whereas, EXtensible Markup Language (XML) in the well-known standard for data for transferring among all computer related resources regardless of their type, shape, place, capability and capacity due to its form is in application understandable form. Finally, semantically enriched and simple of available in Semantic Web is RDF. This comes handy when with the use of linked data to get intelligent inference better and efficient. Multiple Algorithms are built to support this system experiments and proving its true nature of the study.


Author(s):  
Rafael Cunha Cardoso ◽  
Fernando da Fonseca de Souza ◽  
Ana Carolina Salgado

Currently, systems dedicated to information retrieval/extraction perform an important role on fetching relevant and qualified information from the World Wide Web (WWW). The Semantic Web can be described as the Web’s future once it introduces a set of new concepts and tools. For instance, ontology is used to insert knowledge into contents of the current WWW to give meaning to such contents. This allows software agents to better understand the Web’s content meaning so that such agents can execute more complex and useful tasks to users. This work introduces an architecture that uses some Semantic Web concepts allied to Regular Expressions (REGEX) in order to develop a system that retrieves/extracts specific domain information from the Web. A prototype, based on such architecture, was developed to find information about offers announced on supermarkets Web sites.


Author(s):  
Giorgos Laskaridis ◽  
Konstantinos Markellos ◽  
Penelope Markellou ◽  
Angeliki Panayiotaki ◽  
Athanasios Tsakalidis

The emergence of semantic Web opens up boundless new opportunities for e-business. According to Tim Berners-Lee, Hendler, and Lassila (2001), “the semantic Web is an extension of the current Web in which information is given well-defined meaning, better enabling computers and people to work in cooperation”. A more formal definition by W3C (2001) refers that, “the semantic Web is the representation of data on the World Wide Web. It is a collaborative effort led by W3C with participation from a large number of researchers and industrial partners. It is based on the resource description framework (RDF), which integrates a variety of applications using eXtensible Markup Language (XML) for syntax and uniform resource identifiers (URIs) for naming”. The capability of the semantic Web to add meaning to information, stored in such way that it can be searched and processed as well as recent advances in semantic Web-based technologies provide the mechanisms for semantic knowledge representation, exchange and collaboration of e-business processes and applications.


2005 ◽  
Vol 277-279 ◽  
pp. 361-368
Author(s):  
Soo Sun Cho ◽  
Dong Won Han ◽  
Chi Jung Hwang

Redundant images currently abundant in World Wide Web pages need to be removed in order to transform or simplify the Web pages for suitable display in small-screened devices. Classifying removable images on the Web pages according to their uniqueness of content will allow simpler representation of Web pages. For such classification, machine learning based methods can be used to categorize images into two groups; eliminable and non-eliminable. We use two representative learning methods, the Naïve Bayesian classifier and C4.5 decision trees. For our Web image classification, we propose new features that have expressive power for Web images to be classified. We apply image samples to the two classifiers and analyze the results. In addition, we propose an algorithm to construct an optimized subset from a whole feature set, which includes most influential features for the purposes of classification. By using the optimized feature set, the accuracy of classification is found to improve markedly.


Author(s):  
Rui G. Pereira ◽  
Mario M. Freire

The World Wide Web (WWW, Web, or W3) is known as the largest accessible repository of human knowledge. It contains around 3 billion documents, which may be accessed by more than 500 million worldwide users. In only 13 years since its appearance in 1991, the Web suffered such a huge growth that it is safe to say there is no phenomenon in history that can compare to it. It reached such importance that it became an indispensable partner in the lives of people (Daconta, Obrst & Smith, 2003).


2016 ◽  
Vol 35 (1) ◽  
pp. 51 ◽  
Author(s):  
Juliet L. Hardesty

Metadata, particularly within the academic library setting, is often expressed in eXtensible Markup Language (XML) and managed with XML tools, technologies, and workflows. Managing a library’s metadata currently takes on a greater level of complexity as libraries are increasingly adopting the Resource Description Framework (RDF). Semantic Web initiatives are surfacing in the library context with experiments in publishing metadata as Linked Data sets and also with development efforts such as BIBFRAME and the Fedora 4 Digital Repository incorporating RDF. Use cases show that transitions into RDF are occurring in both XML standards and in libraries with metadata encoded in XML. It is vital to understand that transitioning from XML to RDF requires a shift in perspective from replicating structures in XML to defining meaningful relationships in RDF. Establishing coordination and communication among these efforts will help as more libraries move to use RDF, produce Linked Data, and approach the Semantic Web.


Sign in / Sign up

Export Citation Format

Share Document