Analysis of Service Compatibility

Author(s):  
Ken Q. Pu

In this chapter, the authors apply type-theoretic techniques to the service description and composition verification. A flexible type system is introduced for modeling instances and mappings of semi-structured data, and is demonstrated to be effective in modeling a wide range of data services, ranging from relational database queries to web services for XML. Type-theoretic analysis and verification are then reduced to the problem of type unification. Some (in)tractability results of the unification problem and the expressiveness of their proposed type system are presented in this chapter. Finally, the auhtors construct a complete unification algorithm which runs in EXP-TIME in the worst case, but runs in polynomial time for a large family of unification problems rising from practical type analysis of service compositions.

2019 ◽  
Vol 9 (1) ◽  
pp. 1-32 ◽  
Author(s):  
Joseph Eremondi ◽  
Wouter Swierstra ◽  
Jurriaan Hage

AbstractDependently-typed programming languages provide a powerful tool for establishing code correctness. However, it can be hard for newcomers to learn how to employ the advanced type system of such languages effectively. For simply-typed languages, several techniques have been devised to generate helpful error messages and suggestions for the programmer. We adapt these techniques to dependently-typed languages, to facilitate their more widespread adoption. In particular, we modify a higher-order unification algorithm that is used to resolve and type-check implicit arguments. We augment this algorithm with replay graphs, allowing for a global heuristic analysis of a unification problem-set, error-tolerant typing, which allows type-checking to continue after errors are found, and counter-factual unification, which makes error messages less affected by the order in which types are checked. A formalization of our algorithm is presented with an outline of its correctness. We implement replay graphs, and compare the generated error messages to those from existing languages, highlighting the improvements we achieved.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Sean A. Mochocki ◽  
Gary B. Lamont ◽  
Robert C. Leishman ◽  
Kyle J. Kauffman

AbstractDatabase queries are one of the most important functions of a relational database. Users are interested in viewing a variety of data representations, and this may vary based on database purpose and the nature of the stored data. The Air Force Institute of Technology has approximately 100 data logs which will be converted to the standardized Scorpion Data Model format. A relational database is designed to house this data and its associated sensor and non-sensor metadata. Deterministic polynomial-time queries were used to test the performance of this schema against two other schemas, with databases of 100 and 1000 logs of repeated data and randomized metadata. Of these approaches, the one that had the best performance was chosen as AFIT’s database solution, and now more complex and useful queries need to be developed to enable filter research. To this end, consider the combined Multi-Objective Knapsack/Set Covering Database Query. Algorithms which address The Set Covering Problem or Knapsack Problem could be used individually to achieve useful results, but together they could offer additional power to a potential user. This paper explores the NP-Hard problem domain of the Multi-Objective KP/SCP, proposes Genetic and Hill Climber algorithms, implements these algorithms using Java, populates their data structures using SQL queries from two test databases, and finally compares how these algorithms perform.


2000 ◽  
Author(s):  
Emiliano Cioffarelli ◽  
Enrico Sciubba

Abstract A hybrid propulsion system of new conception for medium-size passenger cars is described and its preliminary design developed. The system consists of a turbogas set operating at fixed rpm, and a battery-operated electric motor that constitutes the actual “propulsor”. The battery pack is charged by the thermal engine which works in an electronically controlled on/off mode. Though the idea is not entirely new (there are some concept cars with similar characteristics), the present study has important new aspects, in that it bases the sizing of the thermal engine on the foreseen “worst case” vehicle mission (derived from available data on mileage and consumption derived from road tests and standard EEC driving mission cycles) that they can in fact be accomplished, and then proceeds to develop a control strategy that enables the vehicle to perform at its near–peak efficiency over a wide range of possible missions. To increase the driveability of the car, a variable-inlet vane system is provided for the gas turbine. After developing the mission concept, and showing via a thorough set of energy balances (integrated over various mission profiles), a preliminary sizing of the turbogas set is performed. The results of this first part of the development program show that the concept is indeed feasible, and that it has important advantages over both more traditional (Hybrid Vehicles powered by an Internal Combustion Engine) and novel (All-Electric Vehicle) propulsion systems.


2013 ◽  
Author(s):  

Significantly revised and updated, the new Model Child Care Health Policies, 5th Edition is a must-have tool to foster adoption and implemenation of best practices for health and safety in group care settings for young children. These settings include early care and education as well as before and after school child care programs. These model policies are intended to ease the burden of writing site-specific health and safety policies from scratch. They cover a wide range of aspects of operation of early education and child care programs. Child care programs of any type can use Model Child Care Health Policies by selecting relevant issues for their operation and modifying the wording to make selected policies appropriate to the specific settings. These settings include early education and child care centers, small and large family child care homes, part day-programs for ill children, facilities that serve children with special needs, school-age child care facilities, and drop-in facilities. The model policies can be adapted for public, private, Head Start, and tuition-funded facilities. All of the most commonly covered health and safety topics the National Association of Child Care Resource and Referral Agencies found in state regulations are included in this guide.


2015 ◽  
Vol 53 (3) ◽  
pp. 477-486 ◽  
Author(s):  
Elke Zuern

South Africa is at a crossroads. The state has not adequately addressed dire human development needs, often failing to provide the services it constitutionally guarantees. As a result, citizens are expressing their frustrations in a variety of ways, at times including violence. These serious challenges are most readily apparent in poverty, inequality and unemployment statistics, but also in electricity provision, billing and affordability as well as a recent spate of racially motivated attacks which highlight the tension both among South Africans and between South Africans and darker skinned foreigners. The country has, however, been on the brink before and avoided the worst-case scenario of full-scale civil war and state collapse. Far too often South Africa's past successes have been attributed to the role of one man, Nelson Mandela. While Mandela was indeed an extraordinary human being who rightly deserved the international awards and accolades as well as the deep admiration of so many, South Africa's triumphs as a society and a state are the product of both cooperative and conflicting contributions by a wide range of actors. A central question at the present juncture is how well equipped domestic actors and institutions are to address the crisis. The following pages seek to provide some insights and through the perspectives of three authors to consider causes and possible responses.


The field of biosciences have advanced to a larger extent and have generated large amounts of information from Electronic Health Records. This have given rise to the acute need of knowledge generation from this enormous amount of data. Data mining methods and machine learning play a major role in this aspect of biosciences. Chronic Kidney Disease(CKD) is a condition in which the kidneys are damaged and cannot filter blood as they always do. A family history of kidney diseases or failure, high blood pressure, type 2 diabetes may lead to CKD. This is a lasting damage to the kidney and chances of getting worser by time is high. The very common complications that results due to a kidney failure are heart diseases, anemia, bone diseases, high potasium and calcium. The worst case situation leads to complete kidney failure and necessitates kidney transplant to live. An early detection of CKD can improve the quality of life to a greater extent. This calls for good prediction algorithm to predict CKD at an earlier stage . Literature shows a wide range of machine learning algorithms employed for the prediction of CKD. This paper uses data preprocessing,data transformation and various classifiers to predict CKD and also proposes best Prediction framework for CKD. The results of the framework show promising results of better prediction at an early stage of CKD


Author(s):  
William C. Regli ◽  
Satyandra K. Gupta ◽  
Dana S. Nau

Abstract While automated recognition of features has been attempted for a wide range of applications, no single existing approach possesses the functionality required to perform manufacturability analysis. In this paper, we present a methodology for taking a CAD model of a part and extracting a set of machinable features that contains the complete set of alternative interpretations of the part as collections of MRSEVs (Material Removal Shape Element Volumes, a STEP-based library of machining features). The approach handles a variety of features including those describing holes, pockets, slots, and chamfering and filleting operations. In addition, the approach considers accessibility constraints for these features, has an worst-case algorithmic time complexity quadratic in the number of solid modeling operations, and modifies features recognized to account for available tooling and produce more realistic volumes for manufacturability analysis.


Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1876
Author(s):  
Magdalena Massalska ◽  
Wlodzimierz Maslinski ◽  
Marzena Ciechomska

The development of biological disease-modifying antirheumatic drugs (bDMARDs) and target synthetic DMARDs (tsDMARDs), also known as small molecule inhibitors, represent a breakthrough in rheumatoid arthritis (RA) treatment. The tsDMARDs are a large family of small molecules targeting mostly the several types of kinases, which are essential in downstream signaling of pro-inflammatory molecules. This review highlights current challenges associated with the treatment of RA using small molecule inhibitors targeting intracellular JAKs/MAPKs/NF-κB/SYK-BTK signaling pathways. Indeed, we have provided the latest update on development of small molecule inhibitors, their clinical efficacy and safety as a strategy for RA treatment. On the other hand, we have highlighted the risk and adverse effects of tsDMARDs administration including, among others, infections and thromboembolism. Therefore, performance of blood tests or viral infection screening should be recommended before the tsDMARDs administration. Interestingly, recent events of SARS-CoV-2 outbreak have demonstrated the potential use of small molecule inhibitors not only in RA treatment, but also in fighting COVID-19 via blocking the viral entry, preventing of hyperimmune activation and reducing cytokine storm. Thus, small molecule inhibitors, targeting wide range of pro-inflammatory singling pathways, may find wider implications not only for the management of RA but also in the controlling of COVID-19.


Sign in / Sign up

Export Citation Format

Share Document