Cooperation Strategies for P2P Content Distribution in Cellular Mobile Networks

Author(s):  
Tobias Hoßfeld ◽  
Michael Duelli ◽  
Dirk Staehle ◽  
Phuoc Tran-Gia

The performance of P2P content distribution in cellular networks depends highly on the cooperation and coordination of heterogeneous and often selfish mobile users. The major challenges are the identification of problems arising specifically in cellular mobile networks and the development of new cooperation strategies to overcome these problems. In the coherent previous chapter, the authors focused on the selfishness of users in such heterogeneous environments. This discussion is now extended by emphasizing the impact of mobility and vertical handover between different wireless access technologies. An abstract mobility model is required to allow the performance evaluation in feasible computational time. As a result, the performance in today’s and future cellular networks is predicted and new approaches to master heterogeneity in cellular networks are derived.

Author(s):  
Tobias Hoßfeld ◽  
Daniel Schlosser ◽  
Kurt Tutschku ◽  
Phuoc Tran-Gia

The performance of P2P content distribution in cellular networks depends highly on the cooperation and coordination of heterogeneous and often selfish mobile users. The major challenges are the identification of problems specifically arising in cellular mobile networks and the development of new cooperation strategies to overcome these problems. In this chapter, the authors review common cooperation strategies using multi-source downloads. They demonstrate the fundamental “last chunk” problem of typical strategies as used by eDonkey or BitTorrent. This is caused by the selfishness of users; however, an ordered chunk delivery evades this problem. In the coherent subsequent chapter “Cooperation Strategies for P2P Content Distribution in Cellular Mobile Networks: Considering Mobility and Heterogeneity”, the impact of mobility and vertical handover between heterogeneous wireless access technologies is investigated.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
G. Mapp ◽  
F. Katsriku ◽  
M. Aiash ◽  
N. Chinnam ◽  
R. Lopes ◽  
...  

The development and deployment of several wireless and cellular networks mean that users will demand to be always connected as they move around. Mobile nodes will therefore have several interfaces and connections will be seamlessly switched among available networks using vertical handover techniques. Proactive handover mechanisms can be combined with the deployment of a number of location-based systems that provide location information to a very high degree of accuracy in different contexts. Furthermore, this new environment will also allow contextual information such as user profiles as well as the availability of using location and contextual information to provide efficient handover mechanisms. Using location-based techniques, it is possible to demonstrate that the Time Before Vertical Handover as well as the Network Dwell Time can be accurately estimated. These techniques are dependent on accurately estimating the handover radius. This paper investigates how location and context awareness can be used to estimate the best handover radius. The paper also explores how such techniques may be integrated into the Y-Comm architecture which is being used to explore the development of future mobile networks. Finally, the paper highlights the use of ontological techniques as a mechanism for specifying and prototyping such systems.


Author(s):  
Kurt Tutschku ◽  
Andreas Berl ◽  
Tobias Hossfeld ◽  
Hermann de Meer

The telecommunication industry has recently seen two areas with very high growth rates: cellular networks, for example, GSM (Global System for Mobile Communications) or UMTS (Universal Mobile Telecommunications System), and P2P (Peer-to-Peer) file-sharing applications. A combination of both might be highly attractive: a) for attracting new users; and b) for exploiting the potential of cellular broadband technologies. From a system’s perspective, architectures and performance figures of cellular mobile network applications and services that have edge-based intelligence (e.g,. P2P applications) are, to the best of the authors’ knowledge, less researched and many questions remain open. This chapter presents the design of MP2P (Mobile P2P) applications for cellular mobile networks by using the example of a MP2P content-distribution application. First, the incompatibilities between the P2P paradigm and properties of cellular mobile networks are identified. Then, a design methodology for MP2P applications for cellular mobile networks is proposed. The proposed method is based on a functional analysis of the two basic P2P functions, resource mediation and resource access control. The result is a hybrid P2P content-distribution architecture, which is enhanced by different operator-controlled infrastructure elements. The suggested architecture does not only overcome incompatibilities between P2P and cellular mobile communication systems, it also meets the functional needs and performance requirements of future P2P applications in cellular environments, while still largely preserves the user characteristics and efficiency of P2P systems. Finally, the performance enhancements by the architecture for the two basic P2P functions are investigated by comprehensive simulative and analytical performance evaluations.


2021 ◽  
Author(s):  
Deniss Brodņevs

The Thesis is concerned with assessing the suitability of LTE (4G) cellular networks for the remote control of low-flying UAVs. To solve this problem, an approach to the analysis of the delay values in cellular networks has been developed, which makes it possible to estimate the delays of individual cells and overall cellular network. Requirements for delays in the UAV control channel were developed, conclusions were drawn about the suitability of the LTE network as a communication solution for the UAV remote control. A method for calculating the effect of parallel redundancy is proposed, and an experimental assessment of the possibility of using two existing solutions for parallel redundancy in LTE networks is carried out. In addition, a compact technical solution for analyzing the level of base station signals was demonstrated.


Telecom ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 199-212
Author(s):  
Nasrin Bahra ◽  
Samuel Pierre

Mobile networks are expected to face major problems such as low network capacity, high latency, and limited resources but are expected to provide seamless connectivity in the foreseeable future. It is crucial to deliver an adequate level of performance for network services and to ensure an acceptable quality of services for mobile users. Intelligent mobility management is a promising solution to deal with the aforementioned issues. In this context, modeling user mobility behaviour is of great importance in order to extract valuable information about user behaviours and to meet their demands. In this paper, we propose a hybrid user mobility prediction approach for handover management in mobile networks. First, we extract user mobility patterns using a mobility model based on statistical models and deep learning algorithms. We deploy a vector autoregression (VAR) model and a gated recurrent unit (GRU) to predict the future trajectory of a user. We then reduce the number of unnecessary handover signaling messages and optimize the handover procedure using the obtained prediction results. We deploy mobility data generated from real users to conduct our experiments. The simulation results show that the proposed VAR-GRU mobility model has the lowest prediction error in comparison with existing methods. Moreover, we investigate the handover processing and transmission costs for predictive and non-predictive scenarios. It is shown that the handover-related costs effectively decrease when we obtain a prediction in the network. For vertical handover, processing cost and transmission cost improve, respectively, by 57.14% and 28.01%.


2020 ◽  
Vol 24 (21) ◽  
pp. 2475-2497
Author(s):  
Andrea Verónica Rodríguez-Mayor ◽  
German Jesid Peralta-Camacho ◽  
Karen Johanna Cárdenas-Martínez ◽  
Javier Eduardo García-Castañeda

Glycoproteins and glycopeptides are an interesting focus of research, because of their potential use as therapeutic agents, since they are related to carbohydrate-carbohydrate, carbohydrate-protein, and carbohydrate-lipid interactions, which are commonly involved in biological processes. It has been established that natural glycoconjugates could be an important source of templates for the design and development of molecules with therapeutic applications. However, isolating large quantities of glycoconjugates from biological sources with the required purity is extremely complex, because these molecules are found in heterogeneous environments and in very low concentrations. As an alternative to solving this problem, the chemical synthesis of glycoconjugates has been developed. In this context, several methods for the synthesis of glycopeptides in solution and/or solid-phase have been reported. In most of these methods, glycosylated amino acid derivatives are used as building blocks for both solution and solid-phase synthesis. The synthetic viability of glycoconjugates is a critical parameter for allowing their use as drugs to mitigate the impact of microbial resistance and/or cancer. However, the chemical synthesis of glycoconjugates is a challenge, because these molecules possess multiple reaction sites and have a very specific stereochemistry. Therefore, it is necessary to design and implement synthetic routes, which may involve various protection schemes but can be stereoselective, environmentally friendly, and high-yielding. This review focuses on glycopeptide synthesis by recapitulating the progress made over the last 15 years.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1107
Author(s):  
Stefano d’Ambrosio ◽  
Roberto Finesso ◽  
Gilles Hardy ◽  
Andrea Manelli ◽  
Alessandro Mancarella ◽  
...  

In the present paper, a model-based controller of engine torque and engine-out Nitrogen oxide (NOx) emissions, which was previously developed and tested by means of offline simulations, has been validated on a FPT F1C 3.0 L diesel engine by means of rapid prototyping. With reference to the previous version, a new NOx model has been implemented to improve robustness in terms of NOx prediction. The experimental tests have confirmed the basic functionality of the controller in transient conditions, over different load ramps at fixed engine speeds, over which the average RMSE (Root Mean Square Error) values for the control of NOx emissions were of the order of 55–90 ppm, while the average RMSE values for the control of brake mean effective pressure (BMEP) were of the order of 0.25–0.39 bar. However, the test results also highlighted the need for further improvements, especially concerning the effect of the engine thermal state on the NOx emissions in transient operation. Moreover, several aspects, such as the check of the computational time, the impact of the controller on other pollutant emissions, or on the long-term engine operations, will have to be evaluated in future studies in view of the controller implementation on the engine control unit.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1387
Author(s):  
Oswaldo Sebastian Peñaherrera-Pulla ◽  
Carlos Baena ◽  
Sergio Fortes ◽  
Eduardo Baena ◽  
Raquel Barco

Cloud Gaming is a cutting-edge paradigm in the video game provision where the graphics rendering and logic are computed in the cloud. This allows a user’s thin client systems with much more limited capabilities to offer a comparable experience with traditional local and online gaming but using reduced hardware requirements. In contrast, this approach stresses the communication networks between the client and the cloud. In this context, it is necessary to know how to configure the network in order to provide service with the best quality. To that end, the present work defines a novel framework for Cloud Gaming performance evaluation. This system is implemented in a real testbed and evaluates the Cloud Gaming approach for different transport networks (Ethernet, WiFi, and LTE (Long Term Evolution)) and scenarios, automating the acquisition of the gaming metrics. From this, the impact on the overall gaming experience is analyzed identifying the main parameters involved in its performance. Hence, the future lines for Cloud Gaming QoE-based (Quality of Experience) optimization are established, this way being of configuration, a trendy paradigm in the new-generation networks, such as 4G and 5G (Fourth and Fifth Generation of Mobile Networks).


Sign in / Sign up

Export Citation Format

Share Document