Dynamic Analysis and Stability Improvement Concerning the Integration of Wind Farms Kurdistan Electric Network Case Study

Author(s):  
Mohammad Saleh ◽  
Hassan Bevrani

This chapter presents an overview of key issues and technical challenges in a regional electric network, following the integration of a considerable amount of wind power. A brief survey on wind power system, the present status of wind energy worldwide, common dynamic models, and control loops for wind turbines are given. In this chapter, the Kurdistan electric network in the Northwest part of Iran is introduced as a case study system, and an analytical approach is conducted to evaluate the potential of wind power installation, overall capacity estimation, and economic issues, based on the practical data. Then, the impact of high penetration wind power on the system dynamic and performance for various wind turbine technologies is presented. The stability of integrated system is analyzed, and the need for revising of conventional controls and performance standards is emphasized. Finally, a STATCOM-based control approach is addressed to improve the system stability.

2019 ◽  
Vol 302 ◽  
pp. 01002
Author(s):  
Sylwester Borowski

The paper presents issues related to the impact of wind farms on the environment. Emphasis was placed on vibrations that are transferred to the ground through the foundations. As research has shown - a case study - vibrations are felt up to about 1000 m from wind farms. According to other literature sources, this may affect living organisms in the ground.


2014 ◽  
Vol 644-650 ◽  
pp. 3894-3897
Author(s):  
Xin Wang ◽  
Cheng Wei Li ◽  
Xun An Zhao

Along with the development of wind power in Fuxin, the electric network composition will be bound to incline towards acceptance of wind power. Meanwhile, the accurate estimation of wind power installed capacity will directly affect the development and planning of electric network composition. This paper, based on the actual operating data of the existing wind farms in Fuxin, in analogy to the overall wind resource in this region, estimates the relatively accurate limit value of wind power installed capacity through theoretical calculation and provides theoretical basis for the planning and transformation of the electric network in Fuxin.


2011 ◽  
Vol 347-353 ◽  
pp. 2342-2346
Author(s):  
Rong Fu ◽  
Bao Yun Wang ◽  
Wan Peng Sun

With increasing installation capacity and wind farms penetration, wind power plays more important role in power systems, and the modeling of wind farms has become an interesting research topic. In this paper, a coherency-based equivalent model has been discussed for the doubly fed induction generator (DFIG). Firstly, the dynamic models of wind turbines, DFIG and the mechanisms are briefly introduced. Some existing dynamic equivalent methods such as equivalent wind model, variable speed wind turbine model, parameter identification method and modal equivalent method to be used in wind farm aggregation are discussed. Then, considering wind power fluctuations, a new equivalent model of a wind farm equipped with doubly-fed induction generators is proposed to represent the interactions of the wind farm and grid. The method proposed is based on aggregating the coherent group wind turbines into an equivalent one. Finally, the effectiveness of the equivalent model is demonstrated by comparison with the wind farm response obtained from the detailed model. The dynamic simulations show that the present model can greatly reduce the computation time and model complexity.


2015 ◽  
Vol 740 ◽  
pp. 397-400
Author(s):  
Min Rui Qiao ◽  
Lin Lin Wu ◽  
Yue Qiao Li

As large-scale wind farms are connected to the grid, a single type compensator cannot meet the demand. STATCOM has ability of rapid reaction and harmonics suppression, SVC can compensate large capacity reactive power. In this study, a compensator, which is able to coordinate Static Var System (SVS) with STATCOM is proposed. Large-scale wind power integration is simulated respectively with the compensator of STATCOM alone and coordinated compensator of SVS and STATCOM by DIgSILENT/Powerfactory15.0. Simulations results clearly verify that the compensator of SVS and STATCOM improves transient stability and performance of the photovoltaic systems.


Energy ◽  
2019 ◽  
Vol 166 ◽  
pp. 1168-1180 ◽  
Author(s):  
Qiang Wang ◽  
Kun Luo ◽  
Renyu Yuan ◽  
Sanxia Zhang ◽  
Jianren Fan

Actuators ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 11 ◽  
Author(s):  
Joachim Van Verdeghem ◽  
Virginie Kluyskens ◽  
Bruno Dehez

Electrodynamic thrust bearings (EDTBs) provide contactless rotor axial suspension through electromagnetic forces solely leaning on passive phenomena. Lately, linear state-space equations representing their quasi-static and dynamic behaviours have been developed and validated experimentally. However, to date, the exploitation of these models has been restricted to basic investigations regarding the stiffness and the rotational losses as well as qualitative stability analyses, thus not allowing us to objectively compare the intrinsic qualities of EDTBs. In this context, the present paper introduces four performance criteria directly related to the axial stiffness, the bearing energy efficiency and the minimal amount of external damping required to stabilise the thrust bearing. In addition, the stability is thoroughly examined via analytical developments based on these dynamical models. This notably leads to static and dynamic conditions that ensure the stability at a specific rotor spin speed. The resulting stable speed ranges are studied and their dependence to the axial external stiffness as well as the external non-rotating damping are analysed. Finally, a case study comparing three topologies through these performance criteria underlines that back irons fixed to the windings are not advantageous due to the significant detent force.


2014 ◽  
Vol 687-691 ◽  
pp. 3446-3449
Author(s):  
Min Xue ◽  
Hui Ping Zheng ◽  
Shu Yong Song ◽  
Xin Jie Hao

The technology of VSC-HVDC transmission has a high degree of flexibility and controllability.This paper researches the control strategy of VSC-HVDC and the operating principle of the wind turbine, which can effectively enhance the stability of power system in the region of wind farms, improve the long-distance transmission capacity of wind power and stabilize the voltage level of public connection point.


2013 ◽  
Vol 448-453 ◽  
pp. 2524-2529
Author(s):  
Guo Qing Li ◽  
Fang Jing Zhang ◽  
Hou He Chen

As the number of wind generation facilities in the power system is fast increasing, the research on available transfer capability (ATC) calculation with wind farms has great significance to system operation. With consideration of the uncertainty of the wind powers output, this paper proposes a probability computing method to study the ATC in wind power integrated system. This computing method of ATC is evaluated on non-sequential Monte Carlo simulation, and the ATC of every system state in random sampling is calculated by interior point method. The result shows that the model and algorithm is correct and effective.


Author(s):  
Stephan Algermissen ◽  
Hans P. Monner

Active Vibration Control (AVC) and Active Structural Acoustic Control (ASAC) gained much attention in all kind of industries in the past. Promising results have been achieved in controlling the vibration and the noise emission/transmission of single panel structures. Especially for aircraft applications, concepts for the reduction of the turbulent boundary layer, rotor or jet noise are presented in the literature. In most cases the contributed work is focused on a single panel or a section of the fuselage/lining. However, an AVC/ASAC system can only be effective for the passengers when it is expanded to the entire fuselage structure. This expansion inevitably leads to a large number of sensors and actuators and thus to a controlled plant of high dimensions. For model-based control approaches especially, the system identification and the proof of stability would be challenging and probably not realizable. In this paper a strategy for such large-scale problems is investigated. A decentralized control approach with collocated actuator-sensor pairs is proposed. Since adjacent control loops are highly coupled by the underlying structure, special attention has to be given to the global stability of the entire control system. Instead of proving local stability and setting a global master gain, a method for the tuning of the single collocated control loops is developed that takes the cross-couplings into account. Based on data of DLR’s experimental aircraft Dornier 728, it can be shown that the new method increases the performance of the control system compared to the master-gain method.


Sign in / Sign up

Export Citation Format

Share Document