Impact of Climate Change on Water Resources in Eastern Africa

2022 ◽  
pp. 1150-1174
Author(s):  
Alfred Opere ◽  
Anne Omwoyo ◽  
Purity Mueni ◽  
Mark Arango

Climate change is causing great impact on water resources in Eastern Africa, and there is need to establish and implement effective adaptation and mitigation measures. According to IPCC, less rainfall during the months that are already dry could increase drought as well as precipitation, and this has great impact on both permanent and seasonal water resources. Increased sea surface temperature as a result of climate change could lead to increased drought cases in Eastern African and entire equatorial region. Climate change will also result in annual flow reduction in various river resources available within the region such as the Nile River. IPCC predicts that rainfall will decrease in the already arid areas of the Horn of Africa and that drought and desertification will become more widespread, and as a result, there will be an increased scarcity of freshwater even as groundwater aquifers are being mined. Wetland areas are also being used to obtain water for humans and livestock and as additional cultivation and grazing land. This chapter reviews the climate change impacts on water resources within the Eastern Africa Region. The climate change impacts on different water resources such as Ewao Ngiro have been highlighted and projection of future climate change on water resources examined. Stream flow for Ewaso Ngiro was found to have a significant increasing trend in 2030s of RCP4.5 and non-significant decreasing trend in stream flow in 2060s for RCP4.5.

Author(s):  
Alfred Opere ◽  
Anne Omwoyo ◽  
Purity Mueni ◽  
Mark Arango

Climate change is causing great impact on water resources in Eastern Africa, and there is need to establish and implement effective adaptation and mitigation measures. According to IPCC, less rainfall during the months that are already dry could increase drought as well as precipitation, and this has great impact on both permanent and seasonal water resources. Increased sea surface temperature as a result of climate change could lead to increased drought cases in Eastern African and entire equatorial region. Climate change will also result in annual flow reduction in various river resources available within the region such as the Nile River. IPCC predicts that rainfall will decrease in the already arid areas of the Horn of Africa and that drought and desertification will become more widespread, and as a result, there will be an increased scarcity of freshwater even as groundwater aquifers are being mined. Wetland areas are also being used to obtain water for humans and livestock and as additional cultivation and grazing land. This chapter reviews the climate change impacts on water resources within the Eastern Africa Region. The climate change impacts on different water resources such as Ewao Ngiro have been highlighted and projection of future climate change on water resources examined. Stream flow for Ewaso Ngiro was found to have a significant increasing trend in 2030s of RCP4.5 and non-significant decreasing trend in stream flow in 2060s for RCP4.5.


2021 ◽  
Author(s):  
Christian Huggel ◽  
Simon K. Allen ◽  
Indra D. Bhatt ◽  
Rithodi Chakraborty ◽  
Fabian Drenkhan ◽  
...  

<p>Mountains cover about a quarter of the Earth’s land surface and are home to or serve a substantial fraction of the global population with essential ecosystem services, in particular water, food, energy, and recreation. While mountain systems are expected to be highly exposed to climate change, we currently lack a comprehensive global picture of the extent to which environmental and human systems in mountain regions have been affected by recent anthropogenic climate change.</p><p>Here we undertake an unprecedented effort to detect observed impacts of climate change in mountains regions across all continents. We follow the approach implemented in the IPCC 5<sup>th</sup> Assessment Report (AR5) and follow-up research where we consider whether a natural or human system has changed beyond its baseline behavior in the absence of climate change, and then attribute the observed change to different drivers, including anthropogenic climate change. We apply an extensive review of peer-reviewed and grey literature and identify more than 300 samples of impacts (aggregate and case studies). We show that a wide range of natural and human systems in mountains have been affected by climate change, including the cryosphere, the water cycle and water resources, terrestrial and aquatic ecosystems, energy production, infrastructure, agriculture, health, migration, tourism, community and cultural values and disasters. Our assessment documents that climate change impacts are observed in mountain regions on all continents. However, the explicit distinction of different drivers contributing to or determining an observed change is often highly challenging; particularly due to widespread data scarcity in mountain regions. In that context, we were also able to document a high amount of impacts in previously under-reported continents such as Africa and South America. In particular, we have been able to include a substantial number of place-based insights from local/indigenous communities representing important alternative worldviews.</p><p>The role of human influence in observed climate changes is evaluated using data from multiple gridded observational climate products and global climate models. We find that anthropogenic climate change has a clear and discernable fingerprint in changing natural and human mountain systems across the globe. In the cryosphere, ecosystems, water resources and tourism the contribution of anthropogenic climate change to observed changes is significant, showing the sensitivity of these systems to current and future climate change. Furthermore, our analysis reveals the need to consider the plurality of knowledge systems through which climate change impacts are being understood in mountain regions. Such attempts at inclusivity, which addresses issues of representation and justice, should be deemed necessary in exploring climate change impacts.</p>


2019 ◽  
Vol 64 (6) ◽  
pp. 701-720 ◽  
Author(s):  
Anastassi Stefanova ◽  
Cornelia Hesse ◽  
Valentina Krysanova ◽  
Martin Volk

Abstract This study demonstrates the importance of considering potential land use and management changes in climate impact research. By taking into account possible trends of economic development and environmental awareness, we assess effects of global warming on water availability and quality in the catchments of four European lagoons: Ria de Aveiro (Portugal), Mar Menor (Spain), Vistula Lagoon (Poland and Russia), and Tyligulskyi Liman (Ukraine). Different setups of the process-based soil and water integrated model (SWIM), representing one reference and four socio-economic scenarios for each study area: the “business as usual”, “crisis”, “managed horizons”, and “set-aside” scenarios are driven by sets of 15 climate scenarios for a reference (1971–2000) and near future (2011–2040) scenario period. Modeling results suggest a large spatial variability of potential impacts across the study areas, due to differences in the projected precipitation trends and the current environmental and socio-economic conditions. While climate change may reduce water and nutrients input to the Ria de Aveiro and Tyligulsyi Liman and increase water inflow to the Vistula Lagoon the socio-economic scenarios and their implications may balance out or reverse these trends. In the intensely managed Mar Menor catchment, climate change has no notable direct impact on water resources, but changes in land use and water management may certainly aggravate the current environmental problems. The great heterogeneity among results does not allow formulating adaptation or mitigation measures at pan-European level, as initially intended by this study. It rather implies the need of a regional approach in coastal zone management.


2016 ◽  
Vol 20 (11) ◽  
pp. 1-27 ◽  
Author(s):  
D. M. Nover ◽  
J. W. Witt ◽  
J. B. Butcher ◽  
T. E. Johnson ◽  
C. P. Weaver

Abstract Simulations of future climate change impacts on water resources are subject to multiple and cascading uncertainties associated with different modeling and methodological choices. A key facet of this uncertainty is the coarse spatial resolution of GCM output compared to the finer-resolution information needed by water managers. To address this issue, it is now common practice to apply spatial downscaling techniques, using either higher-resolution regional climate models or statistical approaches applied to GCM output, to develop finer-resolution information. Downscaling, however, can also introduce its own uncertainties into water resources’ impact assessments. This study uses watershed simulations in five U.S. basins to quantify the sources of variability in streamflow, nitrogen, phosphorus, and sediment loads associated with the underlying GCM compared to the choice of downscaling method (both statistically and dynamically downscaled GCM output). This study also assesses the specific, incremental effects of downscaling by comparing watershed simulations based on downscaled and nondownscaled GCM model output. Results show that the underlying GCM and the downscaling method each contribute to the variability of simulated watershed responses. The relative contribution of GCM and downscaling method to the variability of simulated responses varies by watershed and season of the year. Results illustrate the potential implications of one key methodological choice in conducting climate change impact assessments for water—the selection of downscaled climate change information.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1313
Author(s):  
George Akoko ◽  
Tu Hoang Le ◽  
Takashi Gomi ◽  
Tasuku Kato

The soil and water assessment tool (SWAT) is a well-known hydrological modeling tool that has been applied in various hydrologic and environmental simulations. A total of 206 studies over a 15-year period (2005–2019) were identified from various peer-reviewed scientific journals listed on the SWAT website database, which is supported by the Centre for Agricultural and Rural Development (CARD). These studies were categorized into five areas, namely applications considering: water resources and streamflow, erosion and sedimentation, land-use management and agricultural-related contexts, climate-change contexts, and model parameterization and dataset inputs. Water resources studies were applied to understand hydrological processes and responses in various river basins. Land-use and agriculture-related context studies mainly analyzed impacts and mitigation measures on the environment and provided insights into better environmental management. Erosion and sedimentation studies using the SWAT model were done to quantify sediment yield and evaluate soil conservation measures. Climate-change context studies mainly demonstrated streamflow sensitivity to weather changes. The model parameterization studies highlighted parameter selection in streamflow analysis, model improvements, and basin scale calibrations. Dataset inputs mainly compared simulations with rain-gauge and global rainfall data sources. The challenges and advantages of the SWAT model’s applications, which range from data availability and prediction uncertainties to the model’s capability in various applications, are highlighted. Discussions on considerations for future simulations such as data sharing, and potential for better future analysis are also highlighted. Increased efforts in local data availability and a multidimensional approach in future simulations are recommended.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Camille Leclerc ◽  
Franck Courchamp ◽  
Céline Bellard

Abstract Despite their high vulnerability, insular ecosystems have been largely ignored in climate change assessments, and when they are investigated, studies tend to focus on exposure to threats instead of vulnerability. The present study examines climate change vulnerability of islands, focusing on endemic mammals and by 2050 (RCPs 6.0 and 8.5), using trait-based and quantitative-vulnerability frameworks that take into account exposure, sensitivity, and adaptive capacity. Our results suggest that all islands and archipelagos show a certain level of vulnerability to future climate change, that is typically more important in Pacific Ocean ones. Among the drivers of vulnerability to climate change, exposure was rarely the main one and did not explain the pattern of vulnerability. In addition, endemic mammals with long generation lengths and high dietary specializations are predicted to be the most vulnerable to climate change. Our findings highlight the importance of exploring islands vulnerability to identify the highest climate change impacts and to avoid the extinction of unique biodiversity.


2018 ◽  
Vol 163 ◽  
pp. 171-185 ◽  
Author(s):  
Ying Li ◽  
Ting Ren ◽  
Patrick L. Kinney ◽  
Andrew Joyner ◽  
Wei Zhang

Sign in / Sign up

Export Citation Format

Share Document