Climate Change Impact on Agriculture and Food Security

2022 ◽  
pp. 1504-1518
Author(s):  
Ali Syed ◽  
Urooj Afshan Jabeen

Research on the impact of climate change on agriculture and food security is important, especially in the agricultural economies, not only to know the severity of impact but also the policies to be adapted to halt climate change and the technology to be used to mitigate the impact of climate change. The study was conducted in Kapiri Mposhi district of Central Province in Zambia to find out the impact of climate change on agriculture and food security. The objectives of study include to know the intensity of climate change and its impact on area under cultivation, late sowing of seed and damage of seed due to lack of water, fertilizer absorption reduction, food shortage, livestock, and productivity. The chapter also focuses on the sources of credit to the farmers.

Author(s):  
Ali Syed ◽  
Urooj Afshan Jabeen

Research on the impact of climate change on agriculture and food security is important, especially in the agricultural economies, not only to know the severity of impact but also the policies to be adapted to halt climate change and the technology to be used to mitigate the impact of climate change. The study was conducted in Kapiri Mposhi district of Central Province in Zambia to find out the impact of climate change on agriculture and food security. The objectives of study include to know the intensity of climate change and its impact on area under cultivation, late sowing of seed and damage of seed due to lack of water, fertilizer absorption reduction, food shortage, livestock, and productivity. The chapter also focuses on the sources of credit to the farmers.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1153
Author(s):  
Shih-Jung Wang ◽  
Cheng-Haw Lee ◽  
Chen-Feng Yeh ◽  
Yong Fern Choo ◽  
Hung-Wei Tseng

Climate change can directly or indirectly influence groundwater resources. The mechanisms of this influence are complex and not easily quantified. Understanding the effect of climate change on groundwater systems can help governments adopt suitable strategies for water resources. The baseflow concept can be used to relate climate conditions to groundwater systems for assessing the climate change impact on groundwater resources. This study applies the stable baseflow concept to the estimation of the groundwater recharge in ten groundwater regions in Taiwan, under historical and climate scenario conditions. The recharge rates at the main river gauge stations in the groundwater regions were assessed using historical data. Regression equations between rainfall and groundwater recharge quantities were developed for the ten groundwater regions. The assessment results can be used for recharge evaluation in Taiwan. The climate change estimation results show that climate change would increase groundwater recharge by 32.6% or decrease it by 28.9% on average under the climate scenarios, with respect to the baseline quantity in Taiwan. The impact of climate change on groundwater systems may be positive. This study proposes a method for assessing the impact of climate change on groundwater systems. The assessment results provide important information for strategy development in groundwater resources management.


2021 ◽  
pp. 223-227
Author(s):  
Jeremy Gray

Abstract This chapter discusses the impact of climate change on the abundance and distribution of babesiosis vectors and, by implication, transmission of Babesia spp. It discusses evidence for climate change impact on the vectors Ixodes ricinus, Dermacentor reticulatus, Haemaphysalis punctata and Hyalomma spp. as well as the absence of evidence of the same climate change effects on the vectors Rhipicephalus spp. and I. scapularis.


2007 ◽  
Vol 44 (04) ◽  
pp. 245-253
Author(s):  
Ivana Kubat ◽  
Robert Gorman ◽  
Anne Collins ◽  
Garry W. Timco

The objective of this study was to find what effect climate change would have on the Zone-Date System (ZDS). The paper presents an analysis of ice conditions in the Northwest Passage (NWP) shipping lanes and the access routes to the Port of Churchill in the Hudson Strait. The analysis examines the existing and potential changes to ice regimes in the NWP shipping lanes due to the impact of climate change. The length of the shipping season in the NWP is analyzed for each zone by both the ZDS and the Arctic Ice Regime Shipping System, and both systems are then compared. This paper discusses the results of the analysis.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jieming Chou ◽  
Yuan Xu ◽  
Wenjie Dong ◽  
Weixing Zhao ◽  
Jiangnan Li ◽  
...  

Quantitatively projecting the impact of future climate change on the socio-economy and exploring its internal mechanism are of great practical significance to adapt to climate change and prevent climate risks. Based on the economy-climate (C-D-C) model, this paper introduces a yield impact of climate change (YICC) model that can quantitatively project the climate change impact. The model is based on the YICC as its core concept and uses the impact ratio of climate change (IRCC) indicator to assess the response of the economic system to climate change over a long period of time. The YICC is defined as the difference between the economic output under changing climate condition and that under assumed invariant climate condition. The IRCC not only reflects the sensitivity of economic output to climate change but also reveals the mechanism of the nonlinear interaction between climate change and non-climatic factors on the socio-economic system. Using the main grain-producing areas in China as a case study, we use the data of the ensemble average of 5 GCMs in CMIP6 to project the possible impact of climate change on grain production in the next 15–30 years under three future scenarios (SSP1-2.6, SSP2-4.5, SSP5-8.5). The results indicate that the long-term climate change in the future will have a restraining effect on production in North region and enhance production in South region. From 2021 to 2035, climate change will reduce production by 0.60–2.09% in North region, and increase production by 1.80–9.01% in South region under three future scenarios. From 2021 to 2050, compared with the climate change impact in 2021–2035, the negative impact of climate change on production in North region will weaken, and the positive impact on production in South region will enhance with the increase in emission concentration. Among them, climate change will reduce grain output in North region by 0.52–1.99%, and increase output in South region by 1.35–9.56% under the three future scenarios. The combination of economic results and climate change research is expected to provide scientific support for further revealing the economic mechanism of climate change impacts.


2014 ◽  
Vol 38 (4) ◽  
pp. 448-463 ◽  
Author(s):  
David Jaroszweski ◽  
Elizabeth Hooper ◽  
Lee Chapman

The assessment of the potential impact of climate change on transport is an area of research very much in its infancy, and one that requires input from a multitude of disciplines including geography, engineering and technology, meteorology, climatology and futures studies. This paper investigates the current state of the art for assessments on urban surface transport, where rising populations and increasing dependence on efficient and reliable mobility have increased the importance placed on resilience to weather. The standard structure of climate change impact assessment (CIA) requires understanding in three important areas: how weather currently affects infrastructure and operations; how climate change may alter the frequency and magnitude of these impacts; and how concurrent technological and socio-economic development may shape the transport network of the future, either ameliorating or exacerbating the effects of climate change. The extent to which the requisite knowledge exists for a successful CIA is observed to decrease from the former to the latter. This paper traces a number of developments in the extrapolation of physical and behavioural relationships on to future climates, including a broad move away from previous deterministic methods and towards probabilistic projections which make use of a much broader range of climate change model output, giving a better representation of the uncertainty involved. Studies increasingly demand spatially and temporally downscaled climate projections that can represent realistic sub-daily fluctuations in weather that transport systems are sensitive to. It is recommended that future climate change impact assessments should focus on several key areas, including better representation of sub-daily extremes in climate tools, and recreation of realistic spatially coherent weather. Greater use of the increasing amounts of data created and captured by ‘intelligent infrastructure’ and ‘smart cities’ is also needed to develop behavioural and physical models of the response of transport to weather and to develop a better understanding of how stakeholders respond to probabilistic climate change impact projections.


2021 ◽  
Vol 23 (1) ◽  
pp. 82-92
Author(s):  
M.K. YADAV ◽  
C. PATEL ◽  
R.S. SINGH ◽  
K.K. SINGH ◽  
R. BALASUBRAMANIAN ◽  
...  

The CROPGRO-pigeonpea model embedded in DSSAT v4.7.5 was used to assess the impact of climate change on phenology and grain yield of reference genotype of different pigeonpea maturity groups. The impact of climate change delayed reproductive stages (anthesis, maturity) and decreased grain yield of reference genotype of different pigeonpea maturity groups were evident in all scenarios. Short duration genotypes (MN5, ICPL88039, Prabhat, UPAS120) showed progressively higher decrease in yield as compared to medium (Maruti, Asha, ICP7035) and long (Bahar, MAL13) duration genotypes with each successive increase in scenatio from RCP2.6 to RCP8.5 and projected year from 2010 to 2095. Anthesis was delayed 9 days in MN5 to 20 days in Bahar and maturity delayed 15 days in MN5 to 24 days in Bahar with RCP 8.5 in year 2095 in comparison to RCP2.6 in years 2010, whereas, grain yield was decreased 14% in Bahar to 66% in MN5 among genotypes of different maturity groups.


Sign in / Sign up

Export Citation Format

Share Document