Nanotechnology-Based Nano-Biosorbents

Author(s):  
Mintu Maan Dutta ◽  
Anushmita Charingia

Most countries worldwide face the problem related to clean and safe water. The major source of contamination of water bodies includes the discharges of wastes from various domestic and industrial sources (heavy metal ions, dyes, and pharmaceuticals). To overcome those problems, various water purification methods such as coagulation, flocculation, adsorption, membrane separation, biological, and electrochemical methods have been engaged. Adsorption using nano-biosorbents based on chitin, chitosan and modified chitosan, cellulose, alginate, micro algal has emerged as a better alternative for the removal of contaminants from drinking and wastewater treatment. The main advantages of these nano-biosorbents include its biodegradability and eco-friendliness, which have attracted researchers to this field.

Author(s):  
Yurii M. Kholodko ◽  
Antonina I. Bondarieva ◽  
Viktoriia Yu. Tobilko ◽  
Iryna A. Kovalchuk ◽  
Borys Yu. Kornilovych

Background. Obtaining sorption materials based on natural raw materials for water purification from pollution by heavy metal ions is an urgent task of our time. Composites with zero-valent iron nanoparticles immobilized on the surface of clay minerals show rather high sorption properties concerning ions of some heavy metals. However, there are only a few proceedings devoted to the physicochemical substantiation of wastewater treatment processes containing a complex mixture of such pollutants. Objective. The purpose of the paper is to study the physicochemical regularities of wastewater treatment from a mixture of ions of heavy metals Cu(II), Cd(II), Co(II), Zn(II), Cr(VI) using stabilized nano dispersed powders of zero-valent iron. Methods. The phase composition and structural-sorption characteristics of palygorskite and composites were studied by X-ray phase analysis and low-temperature adsorption-desorption of nitrogen. The efficiency of removal of metal ions by silicate materials was investigated using the sorption method. The equilibrium concentrations of each of the metals were determined by inductively coupled plasma atomic emission spectrometry. Results. We have investigated the physicochemical features of wastewater treatment containing a complex mixture of heavy metal ions (Cu(II), Cd(II), Zn(II), Co(II), Cr(VI)). The phase composition and structural-sorption properties of stabilized nano dispersed powders of zero-valent iron have been studied. It has been experimentally confirmed that the materials obtained have significantly better sorption properties for the removal of heavy metals from aqueous solutions in comparison with natural palygorskite. Using Freundlich and Langmuir equations sorption isotherms were calculated. Conclusions. It has been established that stabilized nano dispersed powders of zero-valent iron can be successfully used for the purification of wastewater containing a mixture of toxic ions Cu(II), Cd(II), Co(II), Zn(II) and Cr(VI). It is shown that the degree of water purification by the obtained sorbents is 3–5 times higher than that for the unmodified mineral. A significant increase in the values of sorption of anionic forms of Cr(VI), which are difficult to remove from polluted waters by natural ion exchangers, has been determined.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Naef A. A. Qasem ◽  
Ramy H. Mohammed ◽  
Dahiru U. Lawal

AbstractRemoval of heavy metal ions from wastewater is of prime importance for a clean environment and human health. Different reported methods were devoted to heavy metal ions removal from various wastewater sources. These methods could be classified into adsorption-, membrane-, chemical-, electric-, and photocatalytic-based treatments. This paper comprehensively and critically reviews and discusses these methods in terms of used agents/adsorbents, removal efficiency, operating conditions, and the pros and cons of each method. Besides, the key findings of the previous studies reported in the literature are summarized. Generally, it is noticed that most of the recent studies have focused on adsorption techniques. The major obstacles of the adsorption methods are the ability to remove different ion types concurrently, high retention time, and cycling stability of adsorbents. Even though the chemical and membrane methods are practical, the large-volume sludge formation and post-treatment requirements are vital issues that need to be solved for chemical techniques. Fouling and scaling inhibition could lead to further improvement in membrane separation. However, pre-treatment and periodic cleaning of membranes incur additional costs. Electrical-based methods were also reported to be efficient; however, industrial-scale separation is needed in addition to tackling the issue of large-volume sludge formation. Electric- and photocatalytic-based methods are still less mature. More attention should be drawn to using real wastewaters rather than synthetic ones when investigating heavy metals removal. Future research studies should focus on eco-friendly, cost-effective, and sustainable materials and methods.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 864
Author(s):  
Suguna Perumal ◽  
Raji Atchudan ◽  
Thomas Nesakumar Jebakumar Immanuel Edison ◽  
Rajendran Suresh Babu ◽  
Petchimuthu Karpagavinayagam ◽  
...  

The growth of industry fulfills our necessity and promotes economic development. However, pollutants from such industries pollute water bodies which pose a high risk for living organisms. Thus, researchers have been urged to develop an efficient method to remove toxic heavy metal ions from water bodies. The adsorption method shows promising results for the removal of heavy metal ions and is easy to operate on a large scale, thus can be applied to practical applications. Numerous adsorbents were developed and reported, among them hydrogels, which attract great attention because of the reusability, ease of preparation, and handling. Hydrogels are generally prepared by the cross-linking of polymers that result in a three-dimensional structure, showing high porosity and high functionality. They are hydrophilic in nature because of the functional groups, and are non-toxic. Thus, this review provides various methods of hydrogel adsorbents preparation and summarizes recent progress in the use of hydrogel adsorbents for the removal of heavy metal ions. Further, the mechanism involved in the removal of heavy metal ions is briefly discussed. The most recent studies about the adsorption method for the treatment of heavy metal ions contaminated water are presented.


2016 ◽  
Vol 214 ◽  
pp. 175-191 ◽  
Author(s):  
Lei Zhang ◽  
Yuexian Zeng ◽  
Zhengjun Cheng

RSC Advances ◽  
2022 ◽  
Vol 12 (4) ◽  
pp. 1950-1960
Author(s):  
Zhi Chen ◽  
Jun Zeng ◽  
Zhi-Bo Zhang ◽  
Zhi-Jie Zhang ◽  
Shan Ma ◽  
...  

A kind of magnetic gel material was synthesized by cross-linking PEI modified chitosan and corncob biomass with good adsorption properties of heavy metal ions.


Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 957 ◽  
Author(s):  
Maleshoane Mohapi ◽  
Jeremia Shale Sefadi ◽  
Mokgaotsa Jonas Mochane ◽  
Sifiso Innocent Magagula ◽  
Kgomotso Lebelo

Recently, the development of a unique class of layered silicate nanomaterials has attracted considerable interest for treatment of wastewater. Clean water is an essential commodity for healthier life, agriculture and a safe environment at large. Layered double hydroxides (LDHs) and other clay hybrids are emerging as potential nanostructured adsorbents for water purification. These LDH hybrids are referred to as hydrotalcite-based materials or anionic clays and promising multifunctional two-dimensional (2D) nanomaterials. They are used in many applications including photocatalysis, energy storage, nanocomposites, adsorption, diffusion and water purification. The adsorption and diffusion capacities of various toxic contaminants heavy metal ions and dyes on different unmodified and modified LDH-samples are discussed comparatively with other types of nanoclays acting as adsorbents. This review focuses on the preparation methods, comparison of adsorption and diffusion capacities of LDH-hybrids and other nanoclay materials for the treatment of various contaminants such as heavy metal ions and dyes.


2019 ◽  
Vol 23 (5) ◽  
pp. 37-41
Author(s):  
Quyen Thi Quynh Anh ◽  
D.I. Fazilova ◽  
A.A. Nazirova ◽  
L.A. Zenitova ◽  
V.V. Yanov

It is proposed to use a sorbent based on polyurethane foam and natural raw material chitosan for water purification from oil pollution. Traditionally, chitosan and materials with its use are mainly used as purifiers of water and other media from heavy metal ions. This paper provides information on the use of chitosan, which is preliminary isolated from the waste from processing f various beetles, dead bees, etc. Sorbent synthesis occurs by mixing the components of polyurethane foam and chitosan in a very short time, which allows you to produce and use it directly on site.


Sign in / Sign up

Export Citation Format

Share Document