Inferring Relationship of Landslides, Tectonics, and Climate

Author(s):  
Imlirenla Jamir ◽  
Pranaya Diwate ◽  
Vipin Kumar ◽  
Gambhir Singh Chauhan

Landslides, despite being the surficial impression of climate-tectonic-erosion linkage, are rarely explored in this context in Himalaya. The need for such study becomes more crucial in the evaluation of the regional hillslope denudation budget. We are of the understanding that the distributional pattern of landslides can reveal the relative significance of tectonic and climate. To test this hypothesis, ~ 55 landslides of the Tons River valley, Himalaya along with the tectonic and climate proxies are used in the present study. Steepness index and valley floor width to valley height ratio are used to infer the tectonic regime whereas; Tropical Rainfall Measurement Mission based daily rainfall data and swath profile of Normalized Difference Vegetation Index are used to deduce spatial variability in climate. The study revealed the possible existence of a positive feedback system in the Higher Himalaya Crystalline and the simultaneous role of tectonic-climate in the Lesser Himalaya Crystalline. The LHS is found to possess a zone of landslide cluster, possibly due to local fault.

2019 ◽  
Vol 11 (5) ◽  
pp. 1410 ◽  
Author(s):  
Suman Moparthy ◽  
Dominique Carrer ◽  
Xavier Ceamanos

The ability of spatial remote sensing in the visible domain to properly detect the slow transitions in the Earth’s vegetation is often a subject of debate. The reason behind this is that the satellite products often used to calculate vegetation indices such as surface albedo or reflectance, are not always correctly decontaminated from atmospheric effects. In view of the observed decline in vegetation over the Congo during the last decade, this study investigates how effectively satellite-derived variables can contribute to the answering of this question. In this study, we use two satellite-derived surface albedo products, three satellite-derived aerosol optical depth (AOD) products, two model-derived AOD products, and synthetic observations from radiative transfer simulations. The study discusses the important discrepancies (of up to 70%) found between these satellite surface albedo products in the visible domain over this region. We conclude therefore that the analysis of trends in vegetation properties based on satellite observations in the visible domain such as NDVI (normalized difference vegetation index), calculated from reflectance or albedo variables, is still quite questionable over tropical forest regions such as the Congo. Moreover, this study demonstrates that there is a significant increase (of up to 14%) in total aerosols within the last decade over the Congo. We note that if these changes in aerosol loads are not correctly taken into account in the retrieval of surface albedo, a greenness change of the surface properties (decrease of visible albedo) of around 8% could be artificially detected. Finally, the study also shows that neglecting strong aerosol emissions due to volcano eruptions could lead to an artificial increase of greenness over the Congo of more than 25% in the year of the eruptions and up to 16% during the 2–3 years that follow.


2021 ◽  
Vol 14 (11) ◽  
pp. 25-36
Author(s):  
Florim Isufi ◽  
Albert Berila ◽  
Shpejtim Bulliqi

The study is aimed at investigating the phenomenon of the Surface Urban Heat Island (SUHI) over the municipality of Prishtina. The SUHI was investigated based on the relationship between Land Surface Temperature (LST) estimated from Landsat 8 Thermal Infrared Sensor (TIRS) band with Normalized Difference Built-up Index (NDBI) and Normalized Difference Vegetation Index (NDVI) from Landsat 8 Operational Land Imager (OLI) bands using Geographic Information System (GIS). To understand this relationship, a regression analysis was performed. Regression analysis in both cases showed high relationships between LST, NDVI and NDBI. LST relationships with NDVI showed a strong negative correlation having an R2 value of 0.7638 highlighting the extraordinary role of vegetation towards reducing the SUHI effect while LST relationships with NDBI showed a strong positive correlation having an R2 value of 0.8038 highlighting the role that built-up areas have in strengthening the SUHI effect. Built-up areas and bare surfaces are responsible for generating the SUHI effect while vegetation and water bodies minimize this effect by creating freshness. The maps in which the SUHI phenomenon are identified, are extremely important and should be paid great attention by the city leaders themselves. This should be done in order for urban planning policies to go to those areas where such a harmful phenomenon occurs in order for the lives of citizens to be as healthy as possible.


2020 ◽  
Author(s):  
Qiu Shen ◽  
Jianjun Wu ◽  
Leizhen Liu ◽  
Wenhui Zhao

<p>As an important part of water cycle in terrestrial ecosystem, soil moisture (SM) provides essential raw materials for vegetation photosynthesis, and its changes can affect the photosynthesis process and further affect vegetation growth and development. Thus, SM is always used to detect vegetation water stress and agricultural drought. Solar-induced chlorophyll fluorescence (SIF) is signal with close ties to photosynthesis and the normalized difference vegetation index (NDVI) can reflect the photosynthetic characteristics and photosynthetic yield of vegetations. However, there are few studies looking at the sensitivity of SIF and NDVI to SM changes over the entire growing season that includes multiple phenological stages. By making use of GLDAS-2 SM products along with GOME-2 SIF products and MODIS NDVI products, we discussed the detailed differences in the relationship of SM with SIF and NDVI in different phenological stages for a case study of Northeast China in 2014. Our results show that SIF integrates information from the fraction of photosynthetically active radiation (fPAR), photosynthetically active radiation (PAR) and SIF<sub>yield</sub>, and is more effective than NDVI for monitoring the spatial extension and temporal dynamics of SM on a short time scale during the entire growing season. Especially, SIF<sub>PAR_norm</sub> is the most sensitive to SM changes for eliminating the effects of seasonal variations in PAR. The relationship of SM with SIF and NDVI varies for different vegetation cover types and phenological stages. SIF is more sensitive to SM changes of grasslands in the maturity stage and  rainfed croplands  in the senescence stage than NDVI, and it has significant sensitivities to SM changes of forests in different phenological stages. The sensitivity of SIF and NDVI to SM changes in the senescence stages stems from the fact that vegetation photosynthesis is relatively weaker at this time than that in the maturity stage, and vegetations in the reproductive growth stage still need much water. Relevant results are of great significance to further understand the application of SIF in SM detection.</p>


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Alfred Homère Ngandam Mfondoum ◽  
Pauline Wokwenmendam Nguet ◽  
Jean Valery Mefire Mfondoum ◽  
Mesmin Tchindjang ◽  
Sofia Hakdaoui ◽  
...  

Abstract Background NASA’s developers recently proposed the Sudden Landslide Identification Product (SLIP) and Detecting Real-Time Increased Precipitation (DRIP) algorithms. This double method uses Landsat 8 satellite images and daily rainfall data for a real-time mapping of this geohazard. This study adapts the processing to face the issues of data quality and unavailability/gaps for the mapping of the recent landslide events in west-Cameroon’s highlands. Methods The SLIP algorithm is adapted, by integrating the inverse Normalized Difference Vegetation Index (NDVI) to assess the soil bareness, the Modified Normalized Multi-Band Drought Index (MNMDI) combined with the hydrothermal index to assess soil moisture, and the slope inclination to map the recent landslide. Further, the DRIP algorithm uses the mean daily rainfall to assess the thresholds corresponding to the recent landslide events. Their probability density function (PDF) curves are superimposed and their intersections are used to propose sets of dichotomous variables before (1948–2018) and after the 28 October 2019 landslide event. In addition, a survival analysis is performed to correlate landslide occurrence to rainfall, with the first known event in Cameroon as starting point, and using the Cox model. Results From the SLIP model, the Landslide Hazard Zonation (LHZ) map gives an overall accuracy of 96%. Further, the DRIP model states that 6/9 ranges of probability are rainfall-triggered landslides at 99.99%, between June and October, while 3/9 ranges show only 4.88% of risk for the same interval. Finally, the survival probability for a known site is up to 0.68 for the best value and between 0.38 and 0.1 for the lowest value through time. Conclusions The proposed approach is an alternative based on data (un)availability, completed by the site’s lifetime analysis for a more flexibility in observation and prediction thresholding.


2017 ◽  
pp. 29-37 ◽  
Author(s):  
Ibrahim Molla ◽  
Emiliya Velizarova ◽  
Mariana Zaharinova

The forest fires influence on the plants and soil depends on the fire severity and time of exposure. Fire severity integrates physical, chemical and biological changes occurring in ecosystems on the area as a consequence of fire influence. The purpose of the current investigation was to examine the role of the forest fire severity on the vegetation cover of the area of Svilengrad Municipality, using NDVI (Normalized Difference Vegetation Index) before fire and after fire, derived from LANDSAT 8 TM/ETM images. The comparison of the data from NDVI and that observed on the terrain data was also targeted. The results show that NDVI are changed significantly in fire affected area depending on vegetation cover and type of fire. This index also is very sensitive to changes during time after fire occurrence. One year after fire occurrence the NDVI values increased to +0.305 (0.048) for whole studied area. Through dNDVI could be distinguish the recovery rates of the fire affected areas with different tree species.


2021 ◽  
pp. 100-109
Author(s):  
Koç Mehmet Tuğrul

This study was conducted to estimate the relationship of soil sample analysis and satellite imagery with sugar beet yield (BY). The red NDVI obtained monthly from Landsat OLI satellite images during the 2017 and 2018 sugar beet growing seasons were used to establish relationships between imagery and georeferenced soil sample analyses and sugar beet harvest sites. The study was carried out in the field of Sugar Institute Ilgın Experiment Station, Turkey, in 2017 and 2018. Soil samples were obtained in a 0.4 ha grid, and sugar beet yield and recoverable sugar yield (RSY) were obtained from the same sampling areas. The results showed that there were relationships between some soil analysis factors and BY and beet quality. The overall results showed that the amount of clay, electric conductivity (EC), and organic matter in the field might be indicators of BY and beet quality. A statistically significant moderate positive correlation was also obtained between NDVI (Normalized Difference Vegetation Index) images and BY and RSY values in all images obtained by satellite near the harvest date.


2021 ◽  
Vol 13 (5) ◽  
pp. 840
Author(s):  
Ernesto Sanz ◽  
Antonio Saa-Requejo ◽  
Carlos H. Díaz-Ambrona ◽  
Margarita Ruiz-Ramos ◽  
Alfredo Rodríguez ◽  
...  

Rangeland degradation caused by increasing misuses remains a global concern. Rangelands have a remarkable spatiotemporal heterogeneity, making them suitable to be monitored with remote sensing. Among the remotely sensed vegetation indices, Normalized Difference Vegetation Index (NDVI) is most used in ecology and agriculture. In this paper, we research the relationship of NDVI with temperature, precipitation, and Aridity Index (AI) in four different arid rangeland areas in Spain’s southeast. We focus on the interphase variability, studying time series from 2002 to 2019 with regression analysis and lagged correlation at two different spatial resolutions (500 × 500 and 250 × 250 m2) to understand NDVI response to meteorological variables. Intraseasonal phases were defined based on NDVI patterns. Strong correlation with temperature was reported in phases with high precipitations. The correlation between NDVI and meteorological series showed a time lag effect depending on the area, phase, and variable observed. Differences were found between the two resolutions, showing a stronger relationship with the finer one. Land uses and management affected the NDVI dynamics heavily strongly linked to temperature and water availability. The relationship between AI and NDVI clustered the areas in two groups. The intraphases variability is a crucial aspect of NDVI dynamics, particularly in arid regions.


Sign in / Sign up

Export Citation Format

Share Document