Modelling Molecular Biological Information

Author(s):  
Jacqueline Renee Reich

The amount of available information in molecular biology is vast due to genome sequencing and gene expression chips. Nowadays, the challenge is to represent and manage the static and dynamic properties of DNA sequence data or annotated information to decipher the structural, functional and evolutionary clues encoded in biological sequences. Therefore, molecular biologists build and use ontologies to represent parts of the molecular biological terminology and to provide a model of biological concepts. Ontological Design Patterns (ODPs) provide a technique to increase the flexibility and reusability of these biological ontologies. There are many useful features of ODPs: 1) they describe simple, flexible and reusable solutions to specific design problems, 2) they can be defined and applied within informal or formal ontologies, 3) they make design approaches transferable, clarify the architecture, and improve the documentation of ontology-based knowledge systems, and 4) they form a framework to deal with different bio-informatics tasks, such as accessing and managing heterogeneous molecular biological databases, analysing scientific texts, or annotating sequence databases. Most of the ODPs are informally described in (Reich, 1999). All ODPs with code examples are available from the author.

2021 ◽  
Vol 9 (3) ◽  
pp. 666
Author(s):  
Niccolò Forin ◽  
Alfredo Vizzini ◽  
Federico Fainelli ◽  
Enrico Ercole ◽  
Barbara Baldan

In a recent monograph on the genus Rosellinia, type specimens worldwide were revised and re-classified using a morphological approach. Among them, some came from Pier Andrea Saccardo’s fungarium stored in the Herbarium of the Padova Botanical Garden. In this work, we taxonomically re-examine via a morphological and molecular approach nine different Roselliniasensu Saccardo types. ITS1 and/or ITS2 sequences were successfully obtained applying Illumina MiSeq technology and phylogenetic analyses were carried out in order to elucidate their current taxonomic position. Only the ITS1 sequence was recovered for Rosellinia areolata, while for R. geophila, only the ITS2 sequence was recovered. We proposed here new combinations for Rosellinia chordicola, R. geophila and R. horridula, while for R. ambigua, R. areolata, R. australis, R. romana and R. somala, we did not suggest taxonomic changes compared to the current ones. The name Rosellinia subsimilis Sacc. is invalid, as it is a later homonym of R. subsimilis P. Karst. & Starbäck. Therefore, we introduced Coniochaeta dakotensis as a nomen novum for R. subsimilis Sacc. This is the first time that these types have been subjected to a molecular study. Our results demonstrate that old types are an important source of DNA sequence data for taxonomic re-examinations.


2021 ◽  
Vol 20 (7) ◽  
pp. 911-927
Author(s):  
Lucia Muggia ◽  
Yu Quan ◽  
Cécile Gueidan ◽  
Abdullah M. S. Al-Hatmi ◽  
Martin Grube ◽  
...  

AbstractLichen thalli provide a long-lived and stable habitat for colonization by a wide range of microorganisms. Increased interest in these lichen-associated microbial communities has revealed an impressive diversity of fungi, including several novel lineages which still await formal taxonomic recognition. Among these, members of the Eurotiomycetes and Dothideomycetes usually occur asymptomatically in the lichen thalli, even if they share ancestry with fungi that may be parasitic on their host. Mycelia of the isolates are characterized by melanized cell walls and the fungi display exclusively asexual propagation. Their taxonomic placement requires, therefore, the use of DNA sequence data. Here, we consider recently published sequence data from lichen-associated fungi and characterize and formally describe two new, individually monophyletic lineages at family, genus, and species levels. The Pleostigmataceae fam. nov. and Melanina gen. nov. both comprise rock-inhabiting fungi that associate with epilithic, crust-forming lichens in subalpine habitats. The phylogenetic placement and the monophyly of Pleostigmataceae lack statistical support, but the family was resolved as sister to the order Verrucariales. This family comprises the species Pleostigma alpinum sp. nov., P. frigidum sp. nov., P. jungermannicola, and P. lichenophilum sp. nov. The placement of the genus Melanina is supported as a lineage within the Chaetothyriales. To date, this genus comprises the single species M. gunde-cimermaniae sp. nov. and forms a sister group to a large lineage including Herpotrichiellaceae, Chaetothyriaceae, Cyphellophoraceae, and Trichomeriaceae. The new phylogenetic analysis of the subclass Chaetothyiomycetidae provides new insight into genus and family level delimitation and classification of this ecologically diverse group of fungi.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Heleen Plaisier ◽  
Thomas R. Meagher ◽  
Daniel Barker

Abstract Objective Visualisation methods, primarily color-coded representation of sequence data, have been a predominant means of representation of DNA data. Algorithmic conversion of DNA sequence data to sound—sonification—represents an alternative means of representation that uses a different range of human sensory perception. We propose that sonification has value for public engagement with DNA sequence information because it has potential to be entertaining as well as informative. We conduct preliminary work to explore the potential of DNA sequence sonification in public engagement with bioinformatics. We apply a simple sonification technique for DNA, in which each DNA base is represented by a specific note. Additionally, a beat may be added to indicate codon boundaries or for musical effect. We report a brief analysis from public engagement events we conducted that featured this method of sonification. Results We report on use of DNA sequence sonification at two public events. Sonification has potential in public engagement with bioinformatics, both as a means of data representation and as a means to attract audience to a drop-in stand. We also discuss further directions for research on integration of sonification into bioinformatics public engagement and education.


Zootaxa ◽  
2020 ◽  
Vol 4766 (3) ◽  
pp. 472-484
Author(s):  
HANNAH E. SOM ◽  
L. LEE GRISMER ◽  
PERRY L. JR. WOOD ◽  
EVAN S. H. QUAH ◽  
RAFE M. BROWN ◽  
...  

Liopeltis is a genus of poorly known, infrequently sampled species of colubrid snakes in tropical Asia. We collected a specimen of Liopeltis from Pulau Tioman, Peninsular Malaysia, that superficially resembled L. philippina, a rare species that is endemic to the Palawan Pleistocene Aggregate Island Complex, western Philippines. We analyzed morphological and mitochondrial DNA sequence data from the Pulau Tioman specimen and found distinct differences to L. philippina and all other congeners. On the basis of these corroborated lines of evidence, the Pulau Tioman specimen is described as a new species, L. tiomanica sp. nov. The new species occurs in sympatry with L. tricolor on Pulau Tioman, and our description of L. tiomanica sp. nov. brings the number of endemic amphibians and reptiles on Pulau Tioman to 12. 


2007 ◽  
Vol 3 ◽  
pp. 193-197 ◽  
Author(s):  
Kou Amano ◽  
Hiroaki Ichikawa ◽  
Hidemitsu Nakamura ◽  
Hisataka Numa ◽  
Kaoru Fukami-Kobayashi ◽  
...  

Genetics ◽  
2002 ◽  
Vol 160 (2) ◽  
pp. 765-777 ◽  
Author(s):  
Yuseob Kim ◽  
Wolfgang Stephan

Abstract The theory of genetic hitchhiking predicts that the level of genetic variation is greatly reduced at the site of strong directional selection and increases as the recombinational distance from the site of selection increases. This characteristic pattern can be used to detect recent directional selection on the basis of DNA polymorphism data. However, the large variance of nucleotide diversity in samples of moderate size imposes difficulties in detecting such patterns. We investigated the patterns of genetic variation along a recombining chromosome by constructing ancestral recombination graphs that are modified to incorporate the effect of genetic hitchhiking. A statistical method is proposed to test the significance of a local reduction of variation and a skew of the frequency spectrum caused by a hitchhiking event. This method also allows us to estimate the strength and the location of directional selection from DNA sequence data.


Sign in / Sign up

Export Citation Format

Share Document