Advancement of IoT System QoS by Integrating Cloud, Fog, Roof, and Dew Computing Assisted by SDN

2021 ◽  
Vol 12 (4) ◽  
pp. 132-153
Author(s):  
Ishtiaq Ahammad ◽  
Md. Ashikur Rahman Khan ◽  
Zayed-Us Salehin

In the internet of things (IoT) domain, there has currently been a growing interest, leading to the idea of the IoT ecosystem. But the standards, technology, and structures of the conventional IoT framework do not provide the necessary QoS for today's massive data. Thus, for today's IoT ecosystem, a framework called SD-DRFC (software-defined dew, roof, fog, and cloud computing) is suggested in this article. The framework delivers facilities from the closest possible position of end-user gadgets and thus increases the QoS in an IoT system. Clear description about the role and features of each tier is also presented. The path to a multi-tier computational architecture assisted by SDN can be realized from the given detailed literature review. Using the iFogSim simulator, a use case based on the architecture provided is then given and evaluated. This article considers four QoS parameters (latency, network use, cost, and energy consumption). When compared the findings of the simulation, the proposed framework execution performs much better than cloud-only execution.

2021 ◽  
Vol 21 (3) ◽  
pp. 1-22
Author(s):  
Celestine Iwendi ◽  
Saif Ur Rehman ◽  
Abdul Rehman Javed ◽  
Suleman Khan ◽  
Gautam Srivastava

In this digital age, human dependency on technology in various fields has been increasing tremendously. Torrential amounts of different electronic products are being manufactured daily for everyday use. With this advancement in the world of Internet technology, cybersecurity of software and hardware systems are now prerequisites for major business’ operations. Every technology on the market has multiple vulnerabilities that are exploited by hackers and cyber-criminals daily to manipulate data sometimes for malicious purposes. In any system, the Intrusion Detection System (IDS) is a fundamental component for ensuring the security of devices from digital attacks. Recognition of new developing digital threats is getting harder for existing IDS. Furthermore, advanced frameworks are required for IDS to function both efficiently and effectively. The commonly observed cyber-attacks in the business domain include minor attacks used for stealing private data. This article presents a deep learning methodology for detecting cyber-attacks on the Internet of Things using a Long Short Term Networks classifier. Our extensive experimental testing show an Accuracy of 99.09%, F1-score of 99.46%, and Recall of 99.51%, respectively. A detailed metric representing our results in tabular form was used to compare how our model was better than other state-of-the-art models in detecting cyber-attacks with proficiency.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 539 ◽  
Author(s):  
Arun Kumar Sangaiah ◽  
Ali Asghar Rahmani Hosseinabadi ◽  
Morteza Babazadeh Shareh ◽  
Seyed Yaser Bozorgi Rad ◽  
Atekeh Zolfagharian ◽  
...  

The Internet of Things (IoT) is a distributed system that connects everything via internet. IoT infrastructure contains multiple resources and gateways. In such a system, the problem of optimizing IoT resource allocation and scheduling (IRAS) is vital, because resource allocation (RA) and scheduling deals with the mapping between recourses and gateways and is also responsible for optimally allocating resources to available gateways. In the IoT environment, a gateway may face hundreds of resources to connect. Therefore, manual resource allocation and scheduling is not possible. In this paper, the whale optimization algorithm (WOA) is used to solve the RA problem in IoT with the aim of optimal RA and reducing the total communication cost between resources and gateways. The proposed algorithm has been compared to the other existing algorithms. Results indicate the proper performance of the proposed algorithm. Based on various benchmarks, the proposed method, in terms of “total communication cost”, is better than other ones.


Author(s):  
Konstantinos Kotis ◽  
Artem Katasonov

Internet of Things should be able to integrate an extremely large amount of distributed and heterogeneous entities. To tackle heterogeneity, these entities will need to be consistently and formally represented and managed (registered, aligned, composed and queried) trough suitable abstraction technologies. Two distinct types of these entities are a) sensing/actuating devices that observe some features of interest or act on some other entities (call it ‘smart entities’), and b) applications that utilize the data sensed from or sent to the smart entities (call it ‘control entities’). The aim of this paper is to present the Semantic Smart Gateway Framework for supporting semantic interoperability between these types of heterogeneous IoT entities. More specifically, the paper describes an ontology as the key technology for the abstraction and semantic registration of these entities, towards supporting their automated deployment. The paper also described the alignment of IoT entities and of their exchanged messages. More important, the paper presents a use case scenario and a proof-of-concept implementation.


Author(s):  
Ashvini Uke

The internet of things plays an important role of connecting numerous physical devices and automating them to create human’s life easier. By exploitation sensors, actuators and numerous software package therefore we are able to connect objects and transfer information. Today government has created priority to create cities good across the country. To create a town good, we've to try and do numerous things that may be developed exploitation net of things and good parking is one in all them. With the event of road infrastructure, there's a big increase in variety of personal vehicles which ends in hold up, directly effecting the flow of traffic, and lifetime of voters. Parking becomes a big downside within the urban areas. The analysis paper proposes a wise parking system to unravel the present parking downside at reasonable value. The projected smart Parking system consists of associate on-the-scene preparation of associate IOT module that’s custom-made monitor and signalizes the state of convenience of each single automobile car parking zone. A mobile page is to boot providing permits associate user to see the availability of automobile car parking zone and book a parking slot consequently. Towards the tip, the complete projected system shows the operative of the system in kind of a use case that proves the correctness of the projected model.


Sign in / Sign up

Export Citation Format

Share Document