Progressive-Stepping-Based Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization

2016 ◽  
Vol 7 (3) ◽  
pp. 17-49 ◽  
Author(s):  
Akshay Baviskar ◽  
Shankar Krishnapillai

This paper demonstrates two approaches to achieve faster convergence and a better spread of Pareto solutions in fewer numbers of generations, compared to a few existing algorithms, including NSGA-II and SPEA2 to solve multi-objective optimization problems (MOP's). Two algorithms are proposed based on progressive stepping mechanism, which is obtained by the hybridization of existing Non-dominated Sorting Genetic Algorithm II (NSGA-II) with novel guided search schemes, and modified chromosome selection and replacement mechanisms. Progressive Stepping Non-dominated Sorting based on Local search (PSNS-L) controls the step size, and Progressive Stepping Non-dominated Sorting based on Utopia point (PSNS-U) method controls the number of divisions to generate better chromosomes in each generation to achieve faster convergence. Four multi-objective evolutionary algorithms (EA's) are compared for different benchmark functions and PSNS outperforms them in most cases based on various performance metric values. Finally a mechanical design problem has been solved with PSNS algorithms.

2018 ◽  
Vol 9 (4) ◽  
pp. 71-96 ◽  
Author(s):  
Swapnil Prakash Kapse ◽  
Shankar Krishnapillai

This article demonstrates the implementation of a novel local search approach based on Utopia point guided search, thus improving the exploration ability of multi- objective Particle Swarm Optimization. This strategy searches for best particles based on the criteria of seeking solutions closer to the Utopia point, thus improving the convergence to the Pareto-optimal front. The elite non-dominated selected particles are stored in an archive and updated at every iteration based on least crowding distance criteria. The leader is chosen among the candidates in the archive using the same guided search. From the simulation results based on many benchmark tests, the new algorithm gives better convergence and diversity when compared to existing several algorithms such as NSGA-II, CMOPSO, SMPSO, PSNS, DE+MOPSO and AMALGAM. Finally, the proposed algorithm is used to solve mechanical design based multi-objective optimization problems from the literature, where it shows the same advantages.


2011 ◽  
Vol 474-476 ◽  
pp. 1808-1812
Author(s):  
Bo Fu ◽  
Yi Jing ◽  
Xuan Fu ◽  
Tobias Hemsel

The multi-objective optimal design of a piezoelectric sandwich ultrasonic transducer is studied. The maximum vibration amplitude and the minimum electrical input power are considered as optimization objectives. Design variables involve continuous variables (dimensions of the transducer) and discrete variables (material types). Based on analytical models, the optimal design is formulated as a constrained multi-objective optimization problem. The optimization problem is then solved by using the elitist non-dominated sorting genetic algorithm (NSGA-II) and Pareto-optimal designs are obtained. The optimized results are analyzed and the preferred design is proposed. The optimization procedure presented in this contribution can be applied in multi-objective optimization problems of other piezoelectric transducers.


2021 ◽  
Vol 336 ◽  
pp. 02022
Author(s):  
Liang Meng ◽  
Wen Zhou ◽  
Yang Li ◽  
Zhibin Liu ◽  
Yajing Liu

In this paper, NSGA-Ⅱ is used to realize the dual-objective optimization and three-objective optimization of the solar-thermal photovoltaic hybrid power generation system; Compared with the optimal solution set of three-objective optimization, optimization based on technical and economic evaluation indicators belongs to the category of multi-objective optimization. It can be considered that NSGA-Ⅱ is very suitable for multi-objective optimization of solar-thermal photovoltaic hybrid power generation system and other similar multi-objective optimization problems.


Author(s):  
Andrew J. Robison ◽  
Andrea Vacca

A gerotor gear generation algorithm has been developed that evaluates key performance objective functions to be minimized or maximized, and then an optimization algorithm is applied to determine the best design. Because of their popularity, circular-toothed gerotors are the focus of this study, and future work can extend this procedure to other gear forms. Parametric equations defining the circular-toothed gear set have been derived and implemented. Two objective functions were used in this kinematic optimization: maximize the ratio of displacement to pump radius, which is a measure of compactness, and minimize the kinematic flow ripple, which can have a negative effect on system dynamics and could be a major source of noise. Designs were constrained to ensure drivability, so the need for additional synchronization gearing is eliminated. The NSGA-II genetic algorithm was then applied to the gear generation algorithm in modeFRONTIER, a commercial software that integrates multi-objective optimization with third-party engineering software. A clear Pareto front was identified, and a multi-criteria decision-making genetic algorithm was used to select three optimal designs with varying priorities of compactness vs low flow variation. In addition, three pumps used in industry were scaled and evaluated with the gear generation algorithm for comparison. The scaled industry pumps were all close to the Pareto curve, but the optimized designs offer a slight kinematic advantage, which demonstrates the usefulness of the proposed gerotor design method.


2019 ◽  
Vol 17 (06) ◽  
pp. 1950016 ◽  
Author(s):  
T. Vo-Duy ◽  
D. Duong-Gia ◽  
V. Ho-Huu ◽  
T. Nguyen-Thoi

This paper proposes an effective couple method for solving reliability-based multi-objective optimization problems of truss structures with static and dynamic constraints. The proposed coupling method integrates a single-loop deterministic method (SLDM) into the nondominated sorting genetic algorithm II (NSGA-II) algorithm to give the so-called SLDM-NSGA-II. Thanks to the advantage of SLDM, the probabilistic constraints are treated as approximating deterministic constraints. And therefore the reliability-based multi-objective optimization problems can be transformed into the deterministic multi-objective optimization problems of which the computational cost is reduced significantly. In these reliability-based multi-objective optimization problems, the conflicting objective functions are to minimize the weight and the displacements of the truss. The design variables are cross-section areas of the bars and contraints include static and dynamic constraints. For reliability analysis, the effect of uncertainty of parameters such as force, added mass in the nodes, material properties and cross-section areas of the bars are taken into account. The effectiveness and reliability of the proposed method are demonstrated through three benchmark-type truss structures including a 10-bar planar truss, a 72-bar spatial truss and a 200-bar planar truss. Moreover, the influence of parameters on the reliability-based Pareto optimal fronts is also carried out.


2014 ◽  
Vol 945-949 ◽  
pp. 2241-2247
Author(s):  
De Gao Zhao ◽  
Qiang Li

This paper deals with application of Non-dominated Sorting Genetic Algorithm with elitism (NSGA-II) to solve multi-objective optimization problems of designing a vehicle-borne radar antenna pedestal. Five technical improvements are proposed due to the disadvantages of NSGA-II. They are as follow: (1) presenting a new method to calculate the fitness of individuals in population; (2) renewing the definition of crowding distance; (3) introducing a threshold for choosing elitist; (4) reducing some redundant sorting process; (5) developing a self-adaptive arithmetic cross and mutation probability. The modified algorithm can lead to better population diversity than the original NSGA-II. Simulation results prove rationality and validity of the modified NSGA-II. A uniformly distributed Pareto front can be obtained by using the modified NSGA-II. Finally, a multi-objective problem of designing a vehicle-borne radar antenna pedestal is settled with the modified algorithm.


2013 ◽  
Vol 694-697 ◽  
pp. 2850-2855
Author(s):  
Ting Fang Yu ◽  
Xia Wang ◽  
Chun Hua Peng

This paper discussed application of modified non-dominated sorting genetic algorithm-II (MNSGA-II) to multi-objective optimization of a coal-fired boiler combustion, the two objectives considered are minimization of overall heat loss and NOx emissions from coal-fired boiler. In the first step, BP neural network was proposed to establish a mathematical model predicting the NOx emissions & overall heat loss from the boiler. Then, BP model and the non-dominated sorting genetic algorithm II (NSGA-II) were combined to gain the optimal operating parameters. According to the problems such as premature convergence and uneven distribution of Pareto solutions exist in the application of NSGA-II, corresponding improvements in the crowded-comparison operator and crossover operator were performed. The optimal results show that MNSGA-II can be a good tool to solve the problem of multi-objective optimization of a coal-fired combustion, which can reduce NOx emissions and overall heat loss effectively for the coal-fired boiler. Compared with NSGA-II, the Pareto set obtained by the MNSGA-II shows a better distribution and better quality.


Sign in / Sign up

Export Citation Format

Share Document