The Design and Development of a Modified Artificial Bee Colony Approach for the Traveling Thief Problem

2018 ◽  
Vol 9 (3) ◽  
pp. 32-47 ◽  
Author(s):  
Saad T Alharbi

The traveling thief problem (TTP) is a benchmark problem that consists of two well-known problems, the traveling salesman problem (TSP) and the knapsack problem (KP). It was defined to imitate complex real-world applications that comprise different interdependent sub-problems. Various approaches were proposed in the literature to solve such a problem. These approaches mostly focus on local search algorithms, heuristics methods and evolutionary approaches. In addition, some of these approaches concentrated on solving the problem by considering each sub-problem independently. Thus far, limited approaches were proposed to solve the problem using swarm intelligence. In this article, the authors introduce a modified artificial bees colony (ABC) algorithm that addresses the TTP in an interdependent manner. The performance of this approach was compared with various recent approaches in the literature using different benchmark instances. The obtained results demonstrated that it is competitive with the state-of-the-art approaches, especially on small and medium instances.

2020 ◽  
pp. 365-381
Author(s):  
Saad T. Alharbi

The traveling thief problem (TTP) is a benchmark problem that consists of two well-known problems, the traveling salesman problem (TSP) and the knapsack problem (KP). It was defined to imitate complex real-world applications that comprise different interdependent sub-problems. Various approaches were proposed in the literature to solve such a problem. These approaches mostly focus on local search algorithms, heuristics methods and evolutionary approaches. In addition, some of these approaches concentrated on solving the problem by considering each sub-problem independently. Thus far, limited approaches were proposed to solve the problem using swarm intelligence. In this article, the authors introduce a modified artificial bees colony (ABC) algorithm that addresses the TTP in an interdependent manner. The performance of this approach was compared with various recent approaches in the literature using different benchmark instances. The obtained results demonstrated that it is competitive with the state-of-the-art approaches, especially on small and medium instances.


2021 ◽  
Vol 27 (6) ◽  
pp. 635-645
Author(s):  
Adem Tuncer

The N-puzzle problem is one of the most classical problems in mathematics. Since the number of states in the N-puzzle is equal to the factorial of the number of tiles, traditional algorithms can only provide solutions for small-scale ones, such as 8-puzzle. Various uninformed and informed search algorithms have been applied to solve the N-puzzle, and their performances have been evaluated. Apart from traditional methods, artificial intelligence algorithms are also used for solutions. This paper introduces a new approach based on a meta-heuristic algorithm with a solving of the 15-puzzle problem. Generally, only Manhattan distance is used as the heuristic function, while in this study, a linear conflict function is used to increase the effectiveness of the heuristic function. Besides, the puzzle was divided into subsets named pattern database, and solutions were obtained for the subsets separately with the artificial bee colony (ABC) algorithm. The proposed approach reveals that the ABC algorithm is very successful in solving the 15-puzzle problem.


2011 ◽  
Vol 314-316 ◽  
pp. 2191-2196 ◽  
Author(s):  
Wei Hua Li ◽  
Wei Jia Li ◽  
Yuan Yang ◽  
Hai Qiang Liao ◽  
Ji Long Li ◽  
...  

By combining the modified nearest neighbor approach and the improved inver-over operation, an Artificial Bee Colony (ABC) Algorithm for Traveling Salesman Problem (TSP) is proposed in this paper. The heuristic approach was tested in some benchmark instances selected from TSPLIB. In addition, a comparison study between the proposed algorithm and the Bee Colony Optimization (BCO) model is presented. Experimental results show that the presented algorithm outperforms the BCO method and can efficiently tackle the small and medium scale TSP instances.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Alkın Yurtkuran ◽  
Erdal Emel

The artificial bee colony (ABC) algorithm is a popular swarm based technique, which is inspired from the intelligent foraging behavior of honeybee swarms. This paper proposes a new variant of ABC algorithm, namely, enhanced ABC with solution acceptance rule and probabilistic multisearch (ABC-SA) to address global optimization problems. A new solution acceptance rule is proposed where, instead of greedy selection between old solution and new candidate solution, worse candidate solutions have a probability to be accepted. Additionally, the acceptance probability of worse candidates is nonlinearly decreased throughout the search process adaptively. Moreover, in order to improve the performance of the ABC and balance the intensification and diversification, a probabilistic multisearch strategy is presented. Three different search equations with distinctive characters are employed using predetermined search probabilities. By implementing a new solution acceptance rule and a probabilistic multisearch approach, the intensification and diversification performance of the ABC algorithm is improved. The proposed algorithm has been tested on well-known benchmark functions of varying dimensions by comparing against novel ABC variants, as well as several recent state-of-the-art algorithms. Computational results show that the proposed ABC-SA outperforms other ABC variants and is superior to state-of-the-art algorithms proposed in the literature.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Alkın Yurtkuran ◽  
Erdal Emel

The objective of thep-center problem is to locatep-centers on a network such that the maximum of the distances from each node to its nearest center is minimized. The artificial bee colony algorithm is a swarm-based meta-heuristic algorithm that mimics the foraging behavior of honey bee colonies. This study proposes a modified ABC algorithm that benefits from a variety of search strategies to balance exploration and exploitation. Moreover, random key-based coding schemes are used to solve thep-center problem effectively. The proposed algorithm is compared to state-of-the-art techniques using different benchmark problems, and computational results reveal that the proposed approach is very efficient.


2013 ◽  
Vol 4 (4) ◽  
pp. 23-45 ◽  
Author(s):  
B. S. P. Mishra ◽  
S. Dehuri ◽  
G.-N. Wang

Nowadays computers are used to solve a variety and multitude of complex problems facing in every sphere of peoples’ life. However, many of the problems are intractable in nature exact algorithm might need centuries to manage with formidable challenges. In such cases heuristic or in a broader sense meta-heuristic algorithms that find an approximate solution but have acceptable time and space complexity play indispensable role. In this article, the authors present a state-of-the-art review on meta-heuristic algorithm popularly known as artificial bee colony (ABC) inspired by honey bees. Moreover, the ABC algorithm for solving single and multi-objective optimization problems have been studied. A few potential application areas of ABC are highlighted as an end note of this article.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Anan Banharnsakun ◽  
Supannee Tanathong

Best-so-far ABC is a modified version of the artificial bee colony (ABC) algorithm used for optimization tasks. This algorithm is one of the swarm intelligence (SI) algorithms proposed in recent literature, in which the results demonstrated that the best-so-far ABC can produce higher quality solutions with faster convergence than either the ordinary ABC or the current state-of-the-art ABC-based algorithm. In this work, we aim to apply the best-so-far ABC-based approach for object detection based on template matching by using the difference between the RGB level histograms corresponding to the target object and the template object as the objective function. Results confirm that the proposed method was successful in both detecting objects and optimizing the time used to reach the solution.


2021 ◽  
pp. 1-18
Author(s):  
Baohua Zhao ◽  
Tien-Wen Sung ◽  
Xin Zhang

The artificial bee colony (ABC) algorithm is one of the classical bioinspired swarm-based intelligence algorithms that has strong search ability, because of its special search mechanism, but its development ability is slightly insufficient and its convergence speed is slow. In view of its weak development ability and slow convergence speed, this paper proposes the QABC algorithm in which a new search equation is based on the idea of quasi-affine transformation, which greatly improves the cooperative ability between particles and enhances its exploitability. During the process of location updating, the convergence speed is accelerated by updating multiple dimensions instead of one dimension. Finally, in the overall search framework, a collaborative search matrix is introduced to update the position of particles. The collaborative search matrix is transformed from the lower triangular matrix, which not only ensures the randomness of the search, but also ensures its balance and integrity. To evaluate the performance of the QABC algorithm, CEC2013 test set and CEC2014 test set are used in the experiment. After comparing with the conventional ABC algorithm and some famous ABC variants, QABC algorithm is proved to be superior in efficiency, development ability, and robustness.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1211
Author(s):  
Ivona Brajević

The artificial bee colony (ABC) algorithm is a prominent swarm intelligence technique due to its simple structure and effective performance. However, the ABC algorithm has a slow convergence rate when it is used to solve complex optimization problems since its solution search equation is more of an exploration than exploitation operator. This paper presents an improved ABC algorithm for solving integer programming and minimax problems. The proposed approach employs a modified ABC search operator, which exploits the useful information of the current best solution in the onlooker phase with the intention of improving its exploitation tendency. Furthermore, the shuffle mutation operator is applied to the created solutions in both bee phases to help the search achieve a better balance between the global exploration and local exploitation abilities and to provide a valuable convergence speed. The experimental results, obtained by testing on seven integer programming problems and ten minimax problems, show that the overall performance of the proposed approach is superior to the ABC. Additionally, it obtains competitive results compared with other state-of-the-art algorithms.


Sign in / Sign up

Export Citation Format

Share Document