scholarly journals IoT-Based Intelligent Irrigation System for Paddy Crop Using an Internet-Controlled Water Pump

Author(s):  
Brij Bhushan Sharma ◽  
Nagesh Kumar

IoT is a communal association of things or equipment that can interact with each other with the help of an internet connection. IoT services play an imperative responsibility in the industry of agriculture, which can feed 10 billion people worldwide by 2050. Irrigation systems are a backbone of agriculture that help to reduce wastage of water and decide the effective usage of water according to the specific crop and thereby increase the crop yield. In this paper, an irrigation system is developed to supervise the paddy crop field using sensors (soil moisture sensor, pH sensor, and flow sensor), and this irrigation system works based on the concept of IoT, so it is known as intelligent irrigation system (IIS). The soil condition data from sensors are sent to a web server database using wireless transmission to decide how much water needed. In the proposed server database, the data is saved, and the authors use the concept of a dashboard; it operates via http protocol to control water pump of farmland. The condition of soil is monitored based on the parameter of soil-like moisture and water flow amount using the IoT, which is capable to turn on/off water pumps. The used dashboard is developed using open source free server, namely “000webhost.” This paper has considered the paddy crop that is rice because water is essential for growth and development of rice plants. The experimental results show this system is more proficient than the existing conventional and unadventurous irrigation approach.

2021 ◽  
Vol 4 (2) ◽  
pp. 77-81
Author(s):  
Muhammad Fahim. Obead ◽  
Ihsan Ahmed Taha ◽  
Ahmed Hussein Salaman

Smart farming is one of the keys for future agriculture because it is a management to use modern technology for increasing the quality and quantity of the agriculture. And because of the planet quality depend on the amount of water and the characteristics of soil, it is necessary to study the soil using the soil moisture sensor to investigate whether the soil is dry or wet, also to consider the challenges that could be faced in agricultural environment by maintain the soil and the planets irrigated without extra usage of water. In this paper, a prototype irrigation system uses Arduino Uno microcontroller which is programmed in C++ language to sense the degree of moisture by using soil moisture sensor. According to moisture sensor readings, when the moisture sensor above 1000, Arduino triggers to supply the water by using 5V mini water pump and stop when the soil moisture sensor reading reaches below 400. GSM technology enables the user to be notified in any changes happening in agricultural area by sending SMS (Short Message Service). Whenever the soil become wet or dry and the mini water pump switched on or off, a message delivered to user’s cellular phone indicating the condition of the soil and the action of water pump. In that capacity, this prototype will reduce the time for the user by monitoring remotely without going to his land, and also to reduce the usage of water by allow the water pump to flow the water for limited time until the moisture degree raise again.


Author(s):  
Anton Limbo ◽  
Nalina Suresh ◽  
Set-Sakeus Ndakolute ◽  
Valerianus Hashiyana ◽  
Titus Haiduwa ◽  
...  

Farmers in Namibia currently operate their irrigation systems manually, and this seems to increase labor and regular attention, especially for large farms. With technological advancements, the use of automated irrigation could allow farmers to manage irrigation based on a certain crops' water requirements. This chapter looks at the design and development of a smart irrigation system using IoT. The conceptual design of the system contains monitoring stations placed across the field, equipped with soil moisture sensors and water pumps to maintain the adequate moisture level in the soil for the particular crop being farmed. The design is implemented using an Arduino microcontroller connected to a soil moisture sensor, a relay to control the water pump, as well as a GSM module to send data to a remote server. The remote server is used to represent data on the level of moisture in the soil to the farmers, based on the readings from the monitoring station.


Author(s):  
Ms. Sunitha M ◽  
Kishore Kumar Reddy K ◽  
Venkateswara Reddy G ◽  
Paramesh Reddy B ◽  
Bhooma Reddy A

In this Project we are designing based on irrigation control using Raspberry Pi, which is designed to tackle the problems of agricultural sector regarding irrigation system with available water resources. In this project, monitoring agriculture field we have used different sensors like soil moisture sensor, temperature sensor and rain sensor with raspberry pi. These monitoring data can be observed on android App. System is worked on two modes,1. auto mode 2. manual mode. In android app we can observe values of all sensors for every 5 or 10 seconds with time and date. According to that values user can on-off the water pump using android app, because it is smart system, it takes its own decision for on-off water pump


The agriculture sector is biggest sector of India it provides employment to 50% work force of India. Each and every sector of India is directly or indirectly connected to agriculture sector, despite of this the development in technology is very less. Farmers are still using conventional techniques for farming, the developed technologies are either expensive or does not required by farmer. In this paper a Smart irrigation system is discussed which is economical and have great impact on irrigation system. The system controlled in two modes first is manual and second is automatic control for controlling the operation of water pump. The pump is controlled by using Atmega328P IC which is programmable in nature using relay as switch and taking the feedback from soil moisture sensor and rain sensor for controlling the water pump. The manual control is done by using HTML webpage by BOLT IoT module.


In the current condition, it is difficult to increase plant development and reduce expenses in agricultural sectors; nevertheless, an advanced thought leads to the use of an automated model that introduces automation in the irrigation system, which can aid in improved water and human resources management. An automated model has been developed using sensors and microcontroller technology, to make the most efficient use of water supply for irrigation. A soil moisture content detector is inserted into the soil of the crops, and an ultrasonic sensor is placed above the soil of the crops to measure the water level after irrigation has begun. A C++ program with threshold values for the moisture sensor was used to start the system in the crop field depending on the soil moisture level, and an ultrasonic sensor was used to control the water in the crop field. The Arduino UNO board is a microcontroller inbuilt of Atmel in the mega AVR family (ATMega328) and the sensors were used to lead the model in turning ON/OFF. A microcontroller was included in this model to run the program by receiving sensor input signals and converting them to soil water content and water level values in the crop field. The microcontroller began by receiving input values, which resulted in an output instructing the relay to turn on the groundwater pump. An LCD screen has also been interfaced with the microcontroller to show the percentage of moisture in the soil, field water level, and pump condition. When the soil moisture level reaches 99 percent and the water level reaches 6 cm after 2.5 and 4 minutes, respectively, the pump is turned off. This model, according to the study, might save water, time, and reduce human effort.


Author(s):  
M. Sreenivasulu Naik

Abstract: In Because of the lack of rains and scarcity of land reservoir water, proper irrigation methods are critical in the field of agriculture. The continuous extraction of water from the earth is lowering the water level, causing a lot of land to slowly come into the unirrigated zones. Another important reason for this is because of unplanned water use, which wastes a significant amount of water. This automatic plant irrigation system is used for this purpose. Solar energy is used to power the system via photovoltaic cells. As a result, there is no need to rely on erratic commercial power. In this digital age, we demand that everything around us be automated, reducing human effort. Electronic circuits are becoming more prevalent, making life easier and simpler in today's world. Energy and water scarcity are two major issues that everyone is dealing with these days. As a result, energy and water conservation are required. The goal is to create a solar-powered prototype that will automatically irrigate the field. Consider how convenient it will be to be able to focus on your next task while your field is being irrigated automatically and at a low cost. No worries about underirrigation or over-irrigation, water waste or expensive electricity, or your busy schedule. Keywords: Arduino Uno-Soil Moisture Sensor Submersible Water Pump - Single Channel Relay - Solar Panel - LCD Display - Buzzer - IDE


Sign in / Sign up

Export Citation Format

Share Document