scholarly journals PV Based Automatic Irrigation System

Author(s):  
M. Sreenivasulu Naik

Abstract: In Because of the lack of rains and scarcity of land reservoir water, proper irrigation methods are critical in the field of agriculture. The continuous extraction of water from the earth is lowering the water level, causing a lot of land to slowly come into the unirrigated zones. Another important reason for this is because of unplanned water use, which wastes a significant amount of water. This automatic plant irrigation system is used for this purpose. Solar energy is used to power the system via photovoltaic cells. As a result, there is no need to rely on erratic commercial power. In this digital age, we demand that everything around us be automated, reducing human effort. Electronic circuits are becoming more prevalent, making life easier and simpler in today's world. Energy and water scarcity are two major issues that everyone is dealing with these days. As a result, energy and water conservation are required. The goal is to create a solar-powered prototype that will automatically irrigate the field. Consider how convenient it will be to be able to focus on your next task while your field is being irrigated automatically and at a low cost. No worries about underirrigation or over-irrigation, water waste or expensive electricity, or your busy schedule. Keywords: Arduino Uno-Soil Moisture Sensor Submersible Water Pump - Single Channel Relay - Solar Panel - LCD Display - Buzzer - IDE

Author(s):  
Bhavna Dhole ◽  
Pratiksha Patle ◽  
Onkar Patole ◽  
Suprriya Lohar

This paper addresses water scarcity and electricity crisis by designing and implementing smart irrigation system. This system presents the details of a solar-powered automated irrigation system that turns ON/OFF the motor to pass water through the pump required to soil depending on the soil moisture, hence this system minimize the wastage of water. Soil moisture sensor sense the humidity of soil which is transmitted to a remote station. This data will be analyzed and used to pass out water by water pump. This system conserves electricity and conserves water. It is the proposed solution for the now a days energy crisis for the Indian farmers. Cost-effective solar power can be the answer to our energy needs. Solar powered smart irrigation systems are the acknowledgement to the Indian farmer.This system does not work at night in areas without a grid.


Author(s):  
Mmathapelo Makana ◽  
Nnamdi Nwulu ◽  
Eustace Dogo

Traditional irrigation systems do not take into consideration the conservation of water. Therefore, automating the plant watering systems to reduce water wastage and loss would be key to water conservation as a means of making use of water wisely and responsibly. In this chapter, a smart irrigation system that helps control the amount of water applied to crops is proposed and developed. The system controls the ON/OFF state of the water pumping motor based on the soil moisture sensor reading. Other sensors incorporated in the system are the water level sensor and light dependent resistor. The system leverages on the Arduino Uno microcontroller development board to collect input signals from the three sensors. The water pump operates depending on the value of the output signal received by the relay module. This technique of watering is feasible and very affordable and reduces human intervention in field watering.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2662
Author(s):  
Henrique Fonseca E. de de Oliveira ◽  
Hugo de Moura de Moura Campos ◽  
Marcio Mesquita ◽  
Roriz Luciano Machado ◽  
Luis Sérgio Rodrigues Vale ◽  
...  

Precision irrigation is essential to improve water use efficiency (WUE), defined as the amount of biomass produced per unit of water used by plants. Our objective is to evaluate the effect of different soil volumetric water content (VWC) in plant growth, fruit yield, quality, and WUE of cherry tomatoes grown in a greenhouse. We tested four VWC thresholds (0.23, 0.30, 0.37, and 0.44 m3 m−3) to trigger a drip irrigation system in two tomato cultivars (‘Sweet Heaven’ and ‘Mascot F1′). The experiment was arranged in a split-plot design with four replications. We used capacitance sensors connected to an open-source, low-cost platform to monitor and control the irrigation in real-time based on demand. Plants were watered every time the soil VWC dropped below the set thresholds. The treatment with VWC 0.44 m3 m−3 resulted in the highest fruit yield, with 102.10% higher WUE when compared to the VWC 0.23 m3 m−3 in both cultivars. Fruit quality traits such as longitudinal and equatorial diameter increased asymptotically with soil water content. In contrast, treatments with deficit irrigation increased the fruit soluble solids by 15.73% in both cultivars. These results strongly suggest that accurate control of the soil VWC is essential to modulate the fruit yield and quality attributes in tomatoes produced in the greenhouse.


2021 ◽  
Vol 2107 (1) ◽  
pp. 012034
Author(s):  
F.F. Fhaizal ◽  
S.M. Suboh ◽  
R. Ali

Abstract The demand for food and agriculture production is increasing day by day. To cope with this situation, the traditional method used by farmers to monitor their crops needs to be improved. This project proposes a low-cost agriculture monitoring system that is capable of sending real-time crop soil conditions to farmers to help them in making the best decisions such as for planting and watering. The proposed monitoring system is equipped with a DHT11, LDR, and soil moisture sensor to monitor temperature, humidity, and other parameters. The internet of things (IoT) is implemented in this system to send all the information from sensors to the Cloud and display it through the ThingSpeak website. The mobile application named MY_FARM will read all the data from the ThingSpeak website to display and send a push notification to the farmers instantly if the crop soil conditions are out of the acceptable range. Based on the observation, the serial monitor and the ThingSpeak website will be updated with new data for every 20 seconds. Solar PV-based battery is proposed as the main power supply of the system, hence possible to be installed in remote areas. The experimental result demonstrates that the PV-based battery can charge and discharge and supply power to the system for about 11 hours before needs to be recharged.


The proper usage of water is essential in irrigation because of the shortage of water. The shortage of water is due to lack of rain and continuous supply of water for irrigation as a result lot of water got wasted. It is very much essential to manage the use of water efficiently. The main objective in this project is to watering crops automatically by monitoring soil moisture for supply water based on the requirement and to maintain the water level in the overhead tank. This system suits for all climatic conditions. This project proposed on the usage of automatic irrigation system based on Arduino board, soil moisture sensor, float switch and solar panel. This automatic irrigation system senses the moisture content of the soil and automatically switches the solenoid valve and the overhead water level is monitor by float switch sensor and the power the required for the entire system is generated by using the solar panel. It will automatically control the water level in the tank also. The Global system for mobile communication (GSM) module sends the message, whenever the valve is turn ON and OFF. This project is fully automatic to support farmers, provides water as required, deploys renewable energy, minimize man power, less space, low cost and user friendly.


2019 ◽  
Author(s):  
Viswanatha V

In the field of agriculture, use of proper method of irrigation is important because the  main reason is the lack of rains and scarcity of land reservoir water. The continuous extraction of water from earth is reducing the water level due to which lot of land is coming slowly in the zones of  un-irrigated land. Another very important reason of this is due to unplanned use of water due to which a significant amount of water goes waste. The system derives power from solar energy through photovoltaic cells. Hence, dependency on erratic commercial power is not required. In this paper we use solar energy which is used to operate the irrigation pump. The circuit comprises of sensor parts built using op-amp IC. Op-amp’s are configured here as a comparator. Two stiff  probes are inserted in the soil to sense whether the soil is wet  or dry. A microcontroller is used to control the whole system by monitoring the sensors and when sensors sense dry condition of soil, then microcontroller will send command to relay driver IC the contacts of which are used to switch on the motor and it will switch off the motor when the soil is in wet condition. The microcontroller does the above job as it receives the signal from the sensors through the output of the comparator, and these signals operate which is stored in ROM of the microcontroller. The condition of the pump i.e., ON/OFF is displayed on a 16X2 LCD which is interfaced to the microcontroller. Further it can be enhanced in future by interfacing it with a GSM modem to gain control over the switching operation of the motor.


Sign in / Sign up

Export Citation Format

Share Document