Reinforcement Learning's Contribution to the Cyber Security of Distributed Systems

2020 ◽  
Vol 12 (2) ◽  
pp. 35-55
Author(s):  
Christophe Feltus

Reinforcement learning (RL) is a machine learning paradigm, like supervised or unsupervised learning, which learns the best actions an agent needs to perform to maximize its rewards in a particular environment. Research into RL has been proven to have made a real contribution to the protection of cyberphysical distributed systems. In this paper, the authors propose an analytic framework constituted of five security fields and eight industrial areas. This framework allows structuring a systematic review of the research in artificial intelligence that contributes to cybersecurity. In this contribution, the framework is used to analyse the trends and future fields of interest for the RL-based research in information system security.

2021 ◽  
Vol 4 ◽  
Author(s):  
Lindsay Wells ◽  
Tomasz Bednarz

Research into Explainable Artificial Intelligence (XAI) has been increasing in recent years as a response to the need for increased transparency and trust in AI. This is particularly important as AI is used in sensitive domains with societal, ethical, and safety implications. Work in XAI has primarily focused on Machine Learning (ML) for classification, decision, or action, with detailed systematic reviews already undertaken. This review looks to explore current approaches and limitations for XAI in the area of Reinforcement Learning (RL). From 520 search results, 25 studies (including 5 snowball sampled) are reviewed, highlighting visualization, query-based explanations, policy summarization, human-in-the-loop collaboration, and verification as trends in this area. Limitations in the studies are presented, particularly a lack of user studies, and the prevalence of toy-examples and difficulties providing understandable explanations. Areas for future study are identified, including immersive visualization, and symbolic representation.


Author(s):  
Ahmad Roihan ◽  
Po Abas Sunarya ◽  
Ageng Setiani Rafika

Abstrak - Pembelajaran mesin merupakan bagian dari kecerdasan buatan yang banyak digunakan untuk memecahkan berbagai masalah. Artikel ini menyajikan ulasan pemecahan masalah dari penelitian-penelitian terkini dengan mengklasifikasikan machine learning menjadi tiga kategori: pembelajaran terarah, pembelajaran tidak terarah, dan pembelajaran reinforcement. Hasil ulasan menunjukkan ketiga kategori masih berpeluang digunakan dalam beberapa kasus terkini dan dapat ditingkatkan untuk mengurangi beban komputasi dan mempercepat kinerja untuk mendapatkan tingkat akurasi dan presisi yang tinggi. Tujuan ulasan artikel ini diharapkan dapat menemukan celah dan dijadikan pedoman untuk penelitian pada masa yang akan datang.Katakunci: pembelajaran mesin, pembelajaran reinforcement, pembelajaran terarah, pembelajaran tidak terarahAbstract - Machine learning is part of artificial intelligence that is widely used to solve various problems. This article reviews problem solving from the latest studies by classifying machine learning into three categories: supervised learning, unsupervised learning, and reinforcement learning. The results of the review show that the three categories are still likely to be used in some of the latest cases and can be improved to reduce computational costs and accelerate performance to get a high level of accuracy and precision. The purpose of this article review is expected to be able to find a gap and it is used as a guideline for future research.Keywords: machine learning, reinforcement learning, supervised learning, unsupervised learning


Author(s):  
Petar Radanliev ◽  
David De Roure ◽  
Kevin Page ◽  
Max Van Kleek ◽  
Omar Santos ◽  
...  

AbstractMultiple governmental agencies and private organisations have made commitments for the colonisation of Mars. Such colonisation requires complex systems and infrastructure that could be very costly to repair or replace in cases of cyber-attacks. This paper surveys deep learning algorithms, IoT cyber security and risk models, and established mathematical formulas to identify the best approach for developing a dynamic and self-adapting system for predictive cyber risk analytics supported with Artificial Intelligence and Machine Learning and real-time intelligence in edge computing. The paper presents a new mathematical approach for integrating concepts for cognition engine design, edge computing and Artificial Intelligence and Machine Learning to automate anomaly detection. This engine instigates a step change by applying Artificial Intelligence and Machine Learning embedded at the edge of IoT networks, to deliver safe and functional real-time intelligence for predictive cyber risk analytics. This will enhance capacities for risk analytics and assists in the creation of a comprehensive and systematic understanding of the opportunities and threats that arise when edge computing nodes are deployed, and when Artificial Intelligence and Machine Learning technologies are migrated to the periphery of the internet and into local IoT networks.


Author(s):  
Anil Babu Payedimarri ◽  
Diego Concina ◽  
Luigi Portinale ◽  
Massimo Canonico ◽  
Deborah Seys ◽  
...  

Artificial Intelligence (AI) and Machine Learning (ML) have expanded their utilization in different fields of medicine. During the SARS-CoV-2 outbreak, AI and ML were also applied for the evaluation and/or implementation of public health interventions aimed to flatten the epidemiological curve. This systematic review aims to evaluate the effectiveness of the use of AI and ML when applied to public health interventions to contain the spread of SARS-CoV-2. Our findings showed that quarantine should be the best strategy for containing COVID-19. Nationwide lockdown also showed positive impact, whereas social distancing should be considered to be effective only in combination with other interventions including the closure of schools and commercial activities and the limitation of public transportation. Our findings also showed that all the interventions should be initiated early in the pandemic and continued for a sustained period. Despite the study limitation, we concluded that AI and ML could be of help for policy makers to define the strategies for containing the COVID-19 pandemic.


2021 ◽  
Vol 89 ◽  
pp. 177-198
Author(s):  
Quinlan D. Buchlak ◽  
Nazanin Esmaili ◽  
Jean-Christophe Leveque ◽  
Christine Bennett ◽  
Farrokh Farrokhi ◽  
...  

2020 ◽  
Vol 130 ◽  
pp. 109899 ◽  
Author(s):  
Ioannis Antonopoulos ◽  
Valentin Robu ◽  
Benoit Couraud ◽  
Desen Kirli ◽  
Sonam Norbu ◽  
...  

2019 ◽  
Vol 12 (2) ◽  
pp. 156-164 ◽  
Author(s):  
Nick M Murray ◽  
Mathias Unberath ◽  
Gregory D Hager ◽  
Ferdinand K Hui

Background and purposeAcute stroke caused by large vessel occlusions (LVOs) requires emergent detection and treatment by endovascular thrombectomy. However, radiologic LVO detection and treatment is subject to variable delays and human expertise, resulting in morbidity. Imaging software using artificial intelligence (AI) and machine learning (ML), a branch of AI, may improve rapid frontline detection of LVO strokes. This report is a systematic review of AI in acute LVO stroke identification and triage, and characterizes LVO detection software.MethodsA systematic review of acute stroke diagnostic-focused AI studies from January 2014 to February 2019 in PubMed, Medline, and Embase using terms: ‘artificial intelligence’ or ‘machine learning or deep learning’ and ‘ischemic stroke’ or ‘large vessel occlusion’ was performed.ResultsVariations of AI, including ML methods of random forest learning (RFL) and convolutional neural networks (CNNs), are used to detect LVO strokes. Twenty studies were identified that use ML. Alberta Stroke Program Early CT Score (ASPECTS) commonly used RFL, while LVO detection typically used CNNs. Image feature detection had greater sensitivity with CNN than with RFL, 85% versus 68%. However, AI algorithm performance metrics use different standards, precluding ideal objective comparison. Four current software platforms incorporate ML: Brainomix (greatest validation of AI for ASPECTS, uses CNNs to automatically detect LVOs), General Electric, iSchemaView (largest number of perfusion study validations for thrombectomy), and Viz.ai (uses CNNs to automatically detect LVOs, then automatically activates emergency stroke treatment systems).ConclusionsAI may improve LVO stroke detection and rapid triage necessary for expedited treatment. Standardization of performance assessment is needed in future studies.


2020 ◽  
Vol 23 (6) ◽  
pp. 1172-1191
Author(s):  
Artem Aleksandrovich Elizarov ◽  
Evgenii Viktorovich Razinkov

Recently, such a direction of machine learning as reinforcement learning has been actively developing. As a consequence, attempts are being made to use reinforcement learning for solving computer vision problems, in particular for solving the problem of image classification. The tasks of computer vision are currently one of the most urgent tasks of artificial intelligence. The article proposes a method for image classification in the form of a deep neural network using reinforcement learning. The idea of ​​the developed method comes down to solving the problem of a contextual multi-armed bandit using various strategies for achieving a compromise between exploitation and research and reinforcement learning algorithms. Strategies such as -greedy, -softmax, -decay-softmax, and the UCB1 method, and reinforcement learning algorithms such as DQN, REINFORCE, and A2C are considered. The analysis of the influence of various parameters on the efficiency of the method is carried out, and options for further development of the method are proposed.


Sign in / Sign up

Export Citation Format

Share Document