scholarly journals Utilization of Transfer Learning Model in Detecting COVID-19 Cases From Chest X-Ray Images

Author(s):  
Malathy Jawahar ◽  
L. Jani Anbarasi ◽  
Prassanna Jayachandran ◽  
Manikandan Ramachandran ◽  
Fadi Al-Turjman

Diagnosis of COVID-19 pneumonia using patients’ chest X-Ray images is new but yet important task in the field of medicine. Researchers from different parts of the globe have developed many deep learning models to classify COVID-19. The performance of feature extraction and classifier plays a vital role in the recognizing the different patterns in the image. The pivotal process is the extraction of optimum features from the chest X-Ray images. The main goal of this study is to design an efficient hybrid algorithm that integrates the robustness of MobileNet (using transfer learning approach) to extract features and Support Vector Machine (SVM) to classify COVID-19. Experiments were conducted to test the proposed algorithm and it was found to have a high classification accuracy of 95%.

Diagnosis of COVID-19 pneumonia using patients’ chest X-Ray images is new but yet important task in the field of medicine. Researchers from different parts of the globe have developed many deep learning models to classify COVID-19. The performance of feature extraction and classifier plays a vital role in the recognizing the different patterns in the image. The pivotal process is the extraction of optimum features from the chest X-Ray images. The main goal of this study is to design an efficient hybrid algorithm that integrates the robustness of MobileNet (using transfer learning approach) to extract features and Support Vector Machine (SVM) to classify COVID-19. Experiments were conducted to test the proposed algorithm and it was found to have a high classification accuracy of 95%.


Measurement ◽  
2021 ◽  
pp. 109953
Author(s):  
Adhiyaman Manickam ◽  
Jianmin Jiang ◽  
Yu Zhou ◽  
Abhinav Sagar ◽  
Rajkumar Soundrapandiyan ◽  
...  

2021 ◽  
pp. 20201263
Author(s):  
Mohammad Salehi ◽  
Reza Mohammadi ◽  
Hamed Ghaffari ◽  
Nahid Sadighi ◽  
Reza Reiazi

Objective: Pneumonia is a lung infection and causes the inflammation of the small air sacs (Alveoli) in one or both lungs. Proper and faster diagnosis of pneumonia at an early stage is imperative for optimal patient care. Currently, chest X-ray is considered as the best imaging modality for diagnosing pneumonia. However, the interpretation of chest X-ray images is challenging. To this end, we aimed to use an automated convolutional neural network-based transfer-learning approach to detect pneumonia in paediatric chest radiographs. Methods: Herein, an automated convolutional neural network-based transfer-learning approach using four different pre-trained models (i.e. VGG19, DenseNet121, Xception, and ResNet50) was applied to detect pneumonia in children (1–5 years) chest X-ray images. The performance of different proposed models for testing data set was evaluated using five performances metrics, including accuracy, sensitivity/recall, Precision, area under curve, and F1 score. Results: All proposed models provide accuracy greater than 83.0% for binary classification. The pre-trained DenseNet121 model provides the highest classification performance of automated pneumonia classification with 86.8% accuracy, followed by Xception model with an accuracy of 86.0%. The sensitivity of the proposed models was greater than 91.0%. The Xception and DenseNet121 models achieve the highest classification performance with F1-score greater than 89.0%. The plotted area under curve of receiver operating characteristics of VGG19, Xception, ResNet50, and DenseNet121 models are 0.78, 0.81, 0.81, and 0.86, respectively. Conclusion: Our data showed that the proposed models achieve a high accuracy for binary classification. Transfer learning was used to accelerate training of the proposed models and resolve the problem associated with insufficient data. We hope that these proposed models can help radiologists for a quick diagnosis of pneumonia at radiology departments. Moreover, our proposed models may be useful to detect other chest-related diseases such as novel Coronavirus 2019. Advances in knowledge: Herein, we used transfer learning as a machine learning approach to accelerate training of the proposed models and resolve the problem associated with insufficient data. Our proposed models achieved accuracy greater than 83.0% for binary classification.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chiranjibi Sitaula ◽  
Tej Bahadur Shahi ◽  
Sunil Aryal ◽  
Faezeh Marzbanrad

AbstractChest X-ray (CXR) images have been one of the important diagnosis tools used in the COVID-19 disease diagnosis. Deep learning (DL)-based methods have been used heavily to analyze these images. Compared to other DL-based methods, the bag of deep visual words-based method (BoDVW) proposed recently is shown to be a prominent representation of CXR images for their better discriminability. However, single-scale BoDVW features are insufficient to capture the detailed semantic information of the infected regions in the lungs as the resolution of such images varies in real application. In this paper, we propose a new multi-scale bag of deep visual words (MBoDVW) features, which exploits three different scales of the 4th pooling layer’s output feature map achieved from VGG-16 model. For MBoDVW-based features, we perform the Convolution with Max pooling operation over the 4th pooling layer using three different kernels: $$1 \times 1$$ 1 × 1 , $$2 \times 2$$ 2 × 2 , and $$3 \times 3$$ 3 × 3 . We evaluate our proposed features with the Support Vector Machine (SVM) classification algorithm on four CXR public datasets (CD1, CD2, CD3, and CD4) with over 5000 CXR images. Experimental results show that our method produces stable and prominent classification accuracy (84.37%, 88.88%, 90.29%, and 83.65% on CD1, CD2, CD3, and CD4, respectively).


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8219
Author(s):  
Amin Ul Haq ◽  
Jian Ping Li ◽  
Sultan Ahmad ◽  
Shakir Khan ◽  
Mohammed Ali Alshara ◽  
...  

COVID-19 is a transferable disease that is also a leading cause of death for a large number of people worldwide. This disease, caused by SARS-CoV-2, spreads very rapidly and quickly affects the respiratory system of the human being. Therefore, it is necessary to diagnosis this disease at the early stage for proper treatment, recovery, and controlling the spread. The automatic diagnosis system is significantly necessary for COVID-19 detection. To diagnose COVID-19 from chest X-ray images, employing artificial intelligence techniques based methods are more effective and could correctly diagnosis it. The existing diagnosis methods of COVID-19 have the problem of lack of accuracy to diagnosis. To handle this problem we have proposed an efficient and accurate diagnosis model for COVID-19. In the proposed method, a two-dimensional Convolutional Neural Network (2DCNN) is designed for COVID-19 recognition employing chest X-ray images. Transfer learning (TL) pre-trained ResNet-50 model weight is transferred to the 2DCNN model to enhanced the training process of the 2DCNN model and fine-tuning with chest X-ray images data for final multi-classification to diagnose COVID-19. In addition, the data augmentation technique transformation (rotation) is used to increase the data set size for effective training of the R2DCNNMC model. The experimental results demonstrated that the proposed (R2DCNNMC) model obtained high accuracy and obtained 98.12% classification accuracy on CRD data set, and 99.45% classification accuracy on CXI data set as compared to baseline methods. This approach has a high performance and could be used for COVID-19 diagnosis in E-Healthcare systems.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Arun Sharma ◽  
Sheeba Rani ◽  
Dinesh Gupta

The ongoing pandemic of coronavirus disease 2019 (COVID-19) has led to global health and healthcare crisis, apart from the tremendous socioeconomic effects. One of the significant challenges in this crisis is to identify and monitor the COVID-19 patients quickly and efficiently to facilitate timely decisions for their treatment, monitoring, and management. Research efforts are on to develop less time-consuming methods to replace or to supplement RT-PCR-based methods. The present study is aimed at creating efficient deep learning models, trained with chest X-ray images, for rapid screening of COVID-19 patients. We used publicly available PA chest X-ray images of adult COVID-19 patients for the development of Artificial Intelligence (AI)-based classification models for COVID-19 and other major infectious diseases. To increase the dataset size and develop generalized models, we performed 25 different types of augmentations on the original images. Furthermore, we utilized the transfer learning approach for the training and testing of the classification models. The combination of two best-performing models (each trained on 286 images, rotated through 120° or 140° angle) displayed the highest prediction accuracy for normal, COVID-19, non-COVID-19, pneumonia, and tuberculosis images. AI-based classification models trained through the transfer learning approach can efficiently classify the chest X-ray images representing studied diseases. Our method is more efficient than previously published methods. It is one step ahead towards the implementation of AI-based methods for classification problems in biomedical imaging related to COVID-19.


Sign in / Sign up

Export Citation Format

Share Document