TRAFFIC FLOWS FORECASTING BASED ON MACHINE LEARNING

The article aims to develop a model for forecasting the characteristics of traffic flows in real-time based on the classification of applications using machine learning methods to ensure the quality of service. It is shown that the model can forecast the mean rate and frequency of packet arrival for the entire flow of each class separately. The prediction is based on information about the previous flows of this class and the first 15 packets of the active flow. Thus, the Random Forest Regression method reduces the prediction error by approximately 1.5 times compared to the standard mean estimate for transmitted packets issued at the switch interface.

Author(s):  
D A Zhukov ◽  
V N Klyachkin ◽  
V R Krasheninnikov ◽  
Yu E Kuvayskova

The basic data in the problem of the prediction of technical object’s state of health based on the known indicators of its operation are the known results of the object state estimation by information about previous service. The problem may be solved using the machine learning methods, it reduces to binary classification of states of the object. The research was conducted in the Matlab environment, ten various basic methods of machine learning were used: naive Bayes classifier, neural networks, bagging of decision trees and others. In order to improve quality of healthy state identification, it has been suggested that aggregated methods combining several basic classifiers should be used. This paper addresses the issue of selection of the best aggregated classifier. The effectiveness of such approach has been confirmed by numerous tests of real-world objects.


2020 ◽  
Vol 4 (1) ◽  
pp. 1-6
Author(s):  
Irzal Ahmad Sabilla ◽  
Chastine Fatichah

Vegetables are ingredients for flavoring, such as tomatoes and chilies. A Both of these ingredients are processed to accompany the people's staple food in the form of sauce and seasoning. In supermarkets, these vegetables can be found easily, but many people do not understand how to choose the type and quality of chilies and tomatoes. This study discusses the classification of types of cayenne, curly, green, red chilies, and tomatoes with good and bad conditions using machine learning and contrast enhancement techniques. The machine learning methods used are Support Vector Machine (SVM), K-Nearest Neighbor (K-NN), Linear Discriminant Analysis (LDA), and Random Forest (RF). The results of testing the best method are measured based on the value of accuracy. In addition to the accuracy of this study, it also measures the speed of computation so that the methods used are efficient.


2021 ◽  
Vol 13 (7) ◽  
pp. 1250
Author(s):  
Yanxing Hu ◽  
Tao Che ◽  
Liyun Dai ◽  
Lin Xiao

In this study, a machine learning algorithm was introduced to fuse gridded snow depth datasets. The input variables of the machine learning method included geolocation (latitude and longitude), topographic data (elevation), gridded snow depth datasets and in situ observations. A total of 29,565 in situ observations were used to train and optimize the machine learning algorithm. A total of five gridded snow depth datasets—Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) snow depth, Global Snow Monitoring for Climate Research (GlobSnow) snow depth, Long time series of daily snow depth over the Northern Hemisphere (NHSD) snow depth, ERA-Interim snow depth and Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) snow depth—were used as input variables. The first three snow depth datasets are retrieved from passive microwave brightness temperature or assimilation with in situ observations, while the last two are snow depth datasets obtained from meteorological reanalysis data with a land surface model and data assimilation system. Then, three machine learning methods, i.e., Artificial Neural Networks (ANN), Support Vector Regression (SVR), and Random Forest Regression (RFR), were used to produce a fused snow depth dataset from 2002 to 2004. The RFR model performed best and was thus used to produce a new snow depth product from the fusion of the five snow depth datasets and auxiliary data over the Northern Hemisphere from 2002 to 2011. The fused snow-depth product was verified at five well-known snow observation sites. The R2 of Sodankylä, Old Aspen, and Reynolds Mountains East were 0.88, 0.69, and 0.63, respectively. At the Swamp Angel Study Plot and Weissfluhjoch observation sites, which have an average snow depth exceeding 200 cm, the fused snow depth did not perform well. The spatial patterns of the average snow depth were analyzed seasonally, and the average snow depths of autumn, winter, and spring were 5.7, 25.8, and 21.5 cm, respectively. In the future, random forest regression will be used to produce a long time series of a fused snow depth dataset over the Northern Hemisphere or other specific regions.


Author(s):  
Matheus del Valle ◽  
Kleber Stancari ◽  
Pedro Arthur Augusto de Castro ◽  
Moises Oliveira dos Santos ◽  
Denise Maria Zezell

ACS Omega ◽  
2018 ◽  
Vol 3 (11) ◽  
pp. 15837-15849 ◽  
Author(s):  
Yang Li ◽  
Yujia Tian ◽  
Zijian Qin ◽  
Aixia Yan

PLoS ONE ◽  
2016 ◽  
Vol 11 (12) ◽  
pp. e0166898 ◽  
Author(s):  
Monique A. Ladds ◽  
Adam P. Thompson ◽  
David J. Slip ◽  
David P. Hocking ◽  
Robert G. Harcourt

2020 ◽  
pp. 1-2
Author(s):  
Zhang- sensen

mild cognitive impairment (MCI) is a condition between healthy elderly people and alzheimer's disease (AD). At present, brain network analysis based on machine learning methods can help diagnose MCI. In this paper, the brain network is divided into several subnets based on the shortest path,and the feature vectors of each subnet are extracted and classified. In order to make full use of subnet information, this paper adopts integrated classification model for classification.Each base classification model can predict the classification of a subnet,and the classification results of all subnets are calculated as the classification results of brain network.In order to verify the effectiveness of this method,a brain network of 66 people was constructed and a comparative experiment was carried out.The experimental results show that the classification accuracy of the integrated classification model proposed in this paper is 19% higher than that of SVM,which effectively improves the classification accuracy


Sign in / Sign up

Export Citation Format

Share Document