Behavioral Modeling of Malicious Objects in a Highly Infected Network Under Quarantine Defence

2019 ◽  
Vol 13 (1) ◽  
pp. 17-29 ◽  
Author(s):  
Yerra Shankar Rao ◽  
Prasant Kumar Nayak ◽  
Hemraj Saini ◽  
Tarini Charana Panda

This article describes a highly infected e-epidemic model in a computer network. This article establishes the Basic reproduction number R0, which explicitly brings out the stability conditions. Further, the article shows that if R0< 1 then the infected nodes ceases the spreading of malicious code in computer network as it dies down and consequently establishes the asymptotically stable, when R0> 1, the alternative aspect is that infected nodes stretch out into the network and becomes asymptotically unstable. The pivotal, impact of quarantine node on e-epidemic models has been verified along with its control strategy for a high infected computer network. In the MATLAB simulation, the quarantine class shows its explicit relationship with respect to high as well as low infected class, exposed class, and finally, with recovery class in order to yield increasing safety measures on transmission of malicious codes.

Author(s):  
Yerra Shankar Rao ◽  
Aswin Kumar Rauta ◽  
Hemraj Saini ◽  
Tarini Charana Panda

This investigation focuses to develop an e-SEIRS (susceptible, exposed, infectious, recovered) epidemic computer network model to study the transmission of malicious code in a computer network and derive the approximate threshold condition (basic reproduction number) to examine the equilibrium and stability of the model. The authors have simulated the results for various parameters used in the model and Runge-Kutta Fehlberg fourth-fifth order method is employed to solve system of equations developed. They have studied the stability of crime level to equilibrium and found the critical value of threshold value determining whether or not the infectious free equilibrium is globally asymptotically stable and endemic equilibrium is locally asymptotically stable. The simulation results using MATLAB agree with the real life situations.


Author(s):  
Mojeeb Al-Rahman EL-Nor Osman ◽  
Appiagyei Ebenezer ◽  
Isaac Kwasi Adu

In this paper, an Immunity-Susceptible-Exposed-Infectious-Recovery (MSEIR) mathematical model was used to study the dynamics of measles transmission. We discussed that there exist a disease-free and an endemic equilibria. We also discussed the stability of both disease-free and endemic equilibria.  The basic reproduction number  is obtained. If , then the measles will spread and persist in the population. If , then the disease will die out.  The disease was locally asymptotically stable if  and unstable if  . ALSO, WE PROVED THE GLOBAL STABILITY FOR THE DISEASE-FREE EQUILIBRIUM USING LASSALLE'S INVARIANCE PRINCIPLE OF Lyaponuv function. Furthermore, the endemic equilibrium was locally asymptotically stable if , under certain conditions. Numerical simulations were conducted to confirm our analytic results. Our findings were that, increasing the birth rate of humans, decreasing the progression rate, increasing the recovery rate and reducing the infectious rate can be useful in controlling and combating the measles.


Author(s):  
Bedreddine AINSEBA ◽  
Tarik Touaoula ◽  
Zakia Sari

In this paper, an age structured epidemic Susceptible-Infected-Quarantined-Recovered-Infected (SIQRI) model is proposed, where we will focus on the role of individuals that leave their class of quarantine before being completely recovered and thus will participate again to the transmission of the disease. We investigate the asymptotic behavior of solutions by studying the stability of both trivial and positive equilibria. In order to see the impact of the different model parameters like the relapse rate on the qualitative behavior of our system, we firstly, give the explicit expression of the epidemic reproduction number $R_{0}.$ This number is a combination of the classical epidemic reproduction number for the SIQR model and a new epidemic reproduction number corresponding to the individuals infected by a relapsed person from the R-class. It is shown that, if $R_{0}\leq 1$, the disease free equilibrium is globally asymptotically stable and becomes unstable for $R_{0}>1$. Secondly, while $R_{0}>1$, a suitable Lyapunov functional is constructed to prove that the unique endemic equilibrium is globally asymptotically stable on some subset $\Omega_{0}.$


2021 ◽  
Vol 25 (9) ◽  
pp. 1661-1670
Author(s):  
A.A. Danhausa ◽  
E.E. Daniel ◽  
C.J. Shawulu ◽  
A.M. Nuhu ◽  
L. Philemon

Regardless of many decades of research, the widespread availability of a vaccine and more recently highly visible WHO efforts to promote a unified global control strategy, Tuberculosis remains a leading cause of infectious mortality. In this paper, a Mathematical Model for Tuberculosis Epidemic with Passive Immunity and Drug-Sensitivity is presented. We carried out analytical studies of the model where the population comprises of eight compartments: passively immune infants, susceptible, latently infected with DS-TB. The Disease Free Equilibrium (DFE) and the Endemic Equilibrium (EE) points were established. The next generation matrix method was used to obtain the reproduction number for drug sensitive (𝑅𝑜𝑠) Tuberculosis. We obtained the disease-free equilibrium for drug sensitive TB which is locally asymptotically stable when 𝑅𝑜𝑠 < 1 indicating that tuberculosis eradication is possible within the population. We also obtained the global stability of the disease-free equilibrium and results showed that the disease-free equilibrium point is globally asymptotically stable when 𝑅𝑜𝑠 ≤ 1 which indicates that tuberculosis naturally dies out.


Author(s):  
Sofita Suherman ◽  
Fatmawati Fatmawati ◽  
Cicik Alfiniyah

Ebola disease is one of an infectious disease caused by a virus. Ebola disease can be transmitted through direct contact with Ebola’s patient, infected medical equipment, and contact with the deceased individual. The purpose of this paper is to analyze the stability of equilibriums and to apply the optimal control of treatment on the mathematical model of the spread of Ebola with medical treatment. Model without control has two equilibria, namely non-endemic equilibrium (E0) and endemic equilibrium (E1) The existence of endemic equilibrium and local stability depends on the basic reproduction number (R0). The non-endemic equilibrium is locally asymptotically stable if  R0 < 1 and endemic equilibrium tend to asymptotically stable if R0 >1 . The problem of optimal control is then solved by Pontryagin’s Maximum Principle. From the numerical simulation result, it is found that the control is effective to minimize the number of the infected human population and the number of the infected human with medical treatment population compare without control.


2021 ◽  
Vol 2 (1) ◽  
pp. 29-41
Author(s):  
Erzalina Ayu Satya Megananda ◽  
Cicik Alfiniyah ◽  
Miswanto Miswanto

Ebola disease is an infectious disease caused by a virus from the genus Ebolavirus and the family Filoviridae. Ebola disease is one of the most deadly diseases for human. The purpose of the thesis is to analyze the stability of the equilibrium point and to apply the optimal control of quarantine on a mathematical model of the spread of ebola. Model without control has two equilibria, non-endemic equilibrium and endemic equilibrium. The existence of endemic equilibrium and local stability depends on the basic reproduction number (R0). The non-endemic equilibrium is asymptotically stable if R0 1 and endemic equilibrium tend to asymptotically stable if R0 1. The problem of optimal control is solved by Pontryagin’s Maximum Principle. From the numerical simulation, the result shows that control is effective enough to minimize the number of infected human population and to minimize the cost of its control.


Author(s):  
Bouchaib Khajji ◽  
Abderrahim Labzai ◽  
Omar Balatif ◽  
Mostafa Rachik

In this paper, we present a continuous mathematical model PMHTrTpQ of alcohol drinking with the influence of private and public addiction treatment centers. We study the dynamical behavior of this model and we discuss the basic properties of the system and determine its basic reproduction number R0. We also study the sensitivity analysis of model parameters to know the parameters that have a high impact on the reproduction number R0. The stability analysis of the model shows that the system is locally as well as globally asymptotically stable at drinking-free equilibrium E0 when R0≤1. When R0>1, drinking present equilibrium E∗ exists and the system is locally as well as globally asymptotically stable at alcohol present equilibrium E∗.


2007 ◽  
Vol 8 (3) ◽  
pp. 191-203 ◽  
Author(s):  
J. Tumwiine ◽  
J. Y. T. Mugisha ◽  
L. S. Luboobi

We use a model to study the dynamics of malaria in the human and mosquito population to explain the stability patterns of malaria. The model results show that the disease-free equilibrium is globally asymptotically stable and occurs whenever the basic reproduction number,R0is less than unity. We also note that whenR0>1, the disease-free equilibrium is unstable and the endemic equilibrium is stable. Numerical simulations show that recoveries and temporary immunity keep the populations at oscillation patterns and eventually converge to a steady state.


2010 ◽  
Vol 03 (03) ◽  
pp. 299-312 ◽  
Author(s):  
SHU-MIN GUO ◽  
XUE-ZHI LI ◽  
XIN-YU SONG

In this paper, an age-structured SEIS epidemic model with infectivity in incubative period is formulated and studied. The explicit expression of the basic reproduction number R0 is obtained. It is shown that the disease-free equilibrium is globally asymptotically stable if R0 < 1, at least one endemic equilibrium exists if R0 > 1. The stability conditions of endemic equilibrium are also given.


2013 ◽  
Vol 860-863 ◽  
pp. 2750-2753
Author(s):  
Ya Qin Fan ◽  
Xin Zhang ◽  
Xin Yu Chen ◽  
Chi Li

In order to defense malicious codes increasing serious infestations actively. We proposed several corresponding malicious code found and detection technology on the basis of malware propagation principle. We use MATLAB simulation software to achieve the malware propagation model and detection technology. We proved the practicability of the discovery technology, and present improved methods for the deficiency of the model.


Sign in / Sign up

Export Citation Format

Share Document