TBHM

Author(s):  
Lalit Mohan Gupta ◽  
Abdus Samad ◽  
Hitendra Garg

Healthcare today is one of the most promising, prevailing, and sensitive sectors where patient information like prescriptions, health records, etc., are kept on the cloud to provide high quality on-demand services for enhancing e-health services by reducing the burden of data storage and maintenance to providing information independent of location and time. The major issue with healthcare organization is to provide protected sharing of healthcare data from the cloud to the decision makers, medical practitioners, data analysts, and insurance firms by maintaining confidentiality and integrity. This article proposes a novel and secure threshold based encryption scheme combined with homomorphic properties (TBHM) for accessing cloud based health information. Homomorphic encryption completely eliminates the possibility of any kind of attack as data cannot be accessed using any type of key. The experimental results report superiority of TBHM scheme over state of art in terms throughput, file encryption/decryption time, key generation time, error rate, latency time, and security overheads.

Author(s):  
Ahmad Al Badawi ◽  
Bharadwaj Veeravalli ◽  
Chan Fook Mun ◽  
Khin Mi Mi Aung

Homomorphic encryption (HE) offers great capabilities that can solve a wide range of privacy-preserving computing problems. This tool allows anyone to process encrypted data producing encrypted results that only the decryption key’s owner can decrypt. Although HE has been realized in several public implementations, its performance is quite demanding. The reason for this is attributed to the huge amount of computation required by secure HE schemes. In this work, we present a CUDAbased implementation of the Fan and Vercauteren (FV) Somewhat HomomorphicEncryption (SHE) scheme. We demonstrate several algebraic tools such as the Chinese Remainder Theorem (CRT), Residual Number System (RNS) and Discrete Galois Transform (DGT) to accelerate and facilitate FV computation on GPUs. We also show how the entire FV computation can be done on GPU without multi-precision arithmetic. We compare our GPU implementation with two mature state-of-the-art implementations: 1) Microsoft SEAL v2.3.0-4 and 2) NFLlib-FV. Our implementation outperforms them and achieves on average 5.37x, 7.37x, 22.22x, 5.11x and 13.18x (resp. 2.03x, 2.94x, 27.86x, 8.53x and 18.69x) for key generation, encryption, decryption, homomorphic addition and homomorphic multiplication against SEAL-FVRNS (resp. NFLlib-FV).


2017 ◽  
Vol 7 (2) ◽  
pp. 27-40 ◽  
Author(s):  
Mouhib Ibtihal ◽  
El Ouadghiri Driss ◽  
Naanani Hassan

The integration of cloud computing with mobile computing and internet has given birth to mobile cloud computing. This technology offers many advantages to users, like Storage capacity, Reliability, Scalability and Real time data availability. Therefore, it is s increasing fast and it is inevitably integrated into everyday life. In MCC, data processing and data storage can be migrated into the cloud servers. However, the confidentiality of images and data is most important in today's environment. In this paper, we mainly focus on secure outsourcing of images. For this purpose, we propose a secure architecture composed by two clouds a private cloud dedicated for encryption/decryption and a second public cloud dedicated for storage. We have implemented the first cloud using openstack while respecting the encryption as a service concept. As an encryption scheme, we have used paillier's homomorphic cryptosystem designed specifically for images. The test of the homomorphic property is done by applying the Watermarking algorithm DWT.


Cryptography ◽  
2020 ◽  
pp. 316-330 ◽  
Author(s):  
Mouhib Ibtihal ◽  
El Ouadghiri Driss ◽  
Naanani Hassan

The integration of cloud computing with mobile computing and internet has given birth to mobile cloud computing. This technology offers many advantages to users, like Storage capacity, Reliability, Scalability and Real time data availability. Therefore, it is s increasing fast and it is inevitably integrated into everyday life. In MCC, data processing and data storage can be migrated into the cloud servers. However, the confidentiality of images and data is most important in today's environment. In this paper, we mainly focus on secure outsourcing of images. For this purpose, we propose a secure architecture composed by two clouds a private cloud dedicated for encryption/decryption and a second public cloud dedicated for storage. We have implemented the first cloud using openstack while respecting the encryption as a service concept. As an encryption scheme, we have used paillier's homomorphic cryptosystem designed specifically for images. The test of the homomorphic property is done by applying the Watermarking algorithm DWT.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 3003
Author(s):  
Vinodhini Mani ◽  
Prakash Manickam ◽  
Youseef Alotaibi ◽  
Saleh Alghamdi ◽  
Osamah Ibrahim Khalaf

Blockchain-based electronic health system growth is hindered by privacy, confidentiality, and security. By protecting against them, this research aims to develop cybersecurity measurement approaches to ensure the security and privacy of patient information using blockchain technology in healthcare. Blockchains need huge resources to store big data. This paper presents an innovative solution, namely patient-centric healthcare data management (PCHDM). It comprises the following: (i) in an on-chain health record database, hashes of health records are stored as health record chains in Hyperledger fabric, and (ii) off-chain solutions that encrypt actual health data and store it securely over the interplanetary file system (IPFS) which is the decentralized cloud storage system that ensures scalability, confidentiality, and resolves the problem of blockchain data storage. A security smart contract hosted through container technology with Byzantine Fault Tolerance consensus ensures patient privacy by verifying patient preferences before sharing health records. The Distributed Ledger technology performance is tested under hyper ledger caliper benchmarks in terms of transaction latency, resource utilization, and transaction per second. The model provides stakeholders with increased confidence in collaborating and sharing their health records.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 572
Author(s):  
Aitizaz Ali ◽  
Mohammed Amin Almaiah ◽  
Fahima Hajjej ◽  
Muhammad Fermi Pasha ◽  
Ong Huey Fang ◽  
...  

The IoT refers to the interconnection of things to the physical network that is embedded with software, sensors, and other devices to exchange information from one device to the other. The interconnection of devices means there is the possibility of challenges such as security, trustworthiness, reliability, confidentiality, and so on. To address these issues, we have proposed a novel group theory (GT)-based binary spring search (BSS) algorithm which consists of a hybrid deep neural network approach. The proposed approach effectively detects the intrusion within the IoT network. Initially, the privacy-preserving technology was implemented using a blockchain-based methodology. Security of patient health records (PHR) is the most critical aspect of cryptography over the Internet due to its value and importance, preferably in the Internet of Medical Things (IoMT). Search keywords access mechanism is one of the typical approaches used to access PHR from a database, but it is susceptible to various security vulnerabilities. Although blockchain-enabled healthcare systems provide security, it may lead to some loopholes in the existing state of the art. In literature, blockchain-enabled frameworks have been presented to resolve those issues. However, these methods have primarily focused on data storage and blockchain is used as a database. In this paper, blockchain as a distributed database is proposed with a homomorphic encryption technique to ensure a secure search and keywords-based access to the database. Additionally, the proposed approach provides a secure key revocation mechanism and updates various policies accordingly. As a result, a secure patient healthcare data access scheme is devised, which integrates blockchain and trust chain to fulfill the efficiency and security issues in the current schemes for sharing both types of digital healthcare data. Hence, our proposed approach provides more security, efficiency, and transparency with cost-effectiveness. We performed our simulations based on the blockchain-based tool Hyperledger Fabric and OrigionLab for analysis and evaluation. We compared our proposed results with the benchmark models, respectively. Our comparative analysis justifies that our proposed framework provides better security and searchable mechanism for the healthcare system.


2021 ◽  
Vol 13 (11) ◽  
pp. 5889
Author(s):  
Faiza Hashim ◽  
Khaled Shuaib ◽  
Farag Sallabi

Electronic health records (EHRs) are important assets of the healthcare system and should be shared among medical practitioners to improve the accuracy and efficiency of diagnosis. Blockchain technology has been investigated and adopted in healthcare as a solution for EHR sharing while preserving privacy and security. Blockchain can revolutionize the healthcare system by providing a decentralized, distributed, immutable, and secure architecture. However, scalability has always been a bottleneck in blockchain networks due to the consensus mechanism and ledger replication to all network participants. Sharding helps address this issue by artificially partitioning the network into small groups termed shards and processing transactions parallelly while running consensus within each shard with a subset of blockchain nodes. Although this technique helps resolve issues related to scalability, cross-shard communication overhead can degrade network performance. This study proposes a transaction-based sharding technique wherein shards are formed on the basis of a patient’s previously visited health entities. Simulation results show that the proposed technique outperforms standard-based healthcare blockchain techniques in terms of the number of appointments processed, consensus latency, and throughput. The proposed technique eliminates cross-shard communication by forming complete shards based on “the need to participate” nodes per patient.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Ruoshui Liu ◽  
Jianghui Liu ◽  
Jingjie Zhang ◽  
Moli Zhang

Cloud computing is a new way of data storage, where users tend to upload video data to cloud servers without redundantly local copies. However, it keeps the data out of users' hands which would conventionally control and manage the data. Therefore, it becomes the key issue on how to ensure the integrity and reliability of the video data stored in the cloud for the provision of video streaming services to end users. This paper details the verification methods for the integrity of video data encrypted using the fully homomorphic crytosystems in the context of cloud computing. Specifically, we apply dynamic operation to video data stored in the cloud with the method of block tags, so that the integrity of the data can be successfully verified. The whole process is based on the analysis of present Remote Data Integrity Checking (RDIC) methods.


2018 ◽  
Author(s):  
Mian Zhang ◽  
Yuhong Ji

A problem facing healthcare record systems throughout the world is how to share the medical data with more stakeholders for various purposes without sacrificing data privacy and integrity. Blockchain, operating in a state of consensus, is the underpinning technology that maintains the Bitcoin transaction ledger. Blockchain as a promising technology to manage the transactions has been gaining popularity in the domain of healthcare. Blockchain technology has the potential of securely, privately, and comprehensively manage patient health records. In this work, we discuss the latest status of blockchain technology and how it could solve the current issues in healthcare systems. We evaluate the blockchain technology from the multiple perspectives around healthcare data, including privacy, security, control, and storage. We review the current projects and researches of blockchain in the domain of healthcare records and provide the insight into the design and construction of next generations of blockchain-based healthcare systems.


Cloud computing is the on-request accessibility of computer system resources, specially data storage and computing power, without direct dynamic management by the client. In the simplest terms, cloud computing means storing and accessing data and programs over the Internet instead of your computer’s hard drive. Along the improvement of cloud computing, more and more applications are migrated into the cloud. A significant element of distributed computing is pay-more only as costs arise. Distributed computing gives strong computational capacity to the general public at diminished cost that empowers clients with least computational assets to redistribute their huge calculation outstanding burdens to the cloud, and monetarily appreciate the monstrous computational force, transmission capacity, stockpiling, and even reasonable programming that can be partaken in a compensation for each utilization way Tremendous bit of leeway is the essential objective that forestalls the wide scope of registering model for clients when their secret information are expended during the figuring procedure. Critical thinking is a system to arrive at the pragmatic objective of specific instruments that tackles the issues as well as shield from pernicious practices.. In this paper, we examine secure outsourcing for large-scale systems of linear equations, which are the most popular problems in various engineering disciplines. Linear programming is an operation research technique formulates private data by the customer for LP problem as a set of matrices and vectors, to develop a set of efficient privacypreserving problem transformation techniques, which allow customers to transform original LP problem into some arbitrary one while protecting sensitive input/output information. Identify that LP problem solving in Cloud component is efficient extra cost on cloud server. In this paper we are utilizing Homomorphic encryption system to increase the performance and time efficiency


Sign in / Sign up

Export Citation Format

Share Document