scholarly journals High-Performance FV Somewhat Homomorphic Encryption on GPUs: An Implementation using CUDA

Author(s):  
Ahmad Al Badawi ◽  
Bharadwaj Veeravalli ◽  
Chan Fook Mun ◽  
Khin Mi Mi Aung

Homomorphic encryption (HE) offers great capabilities that can solve a wide range of privacy-preserving computing problems. This tool allows anyone to process encrypted data producing encrypted results that only the decryption key’s owner can decrypt. Although HE has been realized in several public implementations, its performance is quite demanding. The reason for this is attributed to the huge amount of computation required by secure HE schemes. In this work, we present a CUDAbased implementation of the Fan and Vercauteren (FV) Somewhat HomomorphicEncryption (SHE) scheme. We demonstrate several algebraic tools such as the Chinese Remainder Theorem (CRT), Residual Number System (RNS) and Discrete Galois Transform (DGT) to accelerate and facilitate FV computation on GPUs. We also show how the entire FV computation can be done on GPU without multi-precision arithmetic. We compare our GPU implementation with two mature state-of-the-art implementations: 1) Microsoft SEAL v2.3.0-4 and 2) NFLlib-FV. Our implementation outperforms them and achieves on average 5.37x, 7.37x, 22.22x, 5.11x and 13.18x (resp. 2.03x, 2.94x, 27.86x, 8.53x and 18.69x) for key generation, encryption, decryption, homomorphic addition and homomorphic multiplication against SEAL-FVRNS (resp. NFLlib-FV).

Author(s):  
Desam Vamsi ◽  
Pradeep Reddy

Security is the primary issue nowadays because cybercrimes are increasing. The organizations can store and maintain their data on their own, but it is not cost effective, so for convenience they are choosing cloud. Due to its popularity, the healthcare organizations are storing their sensitive data to cloud-based storage systems, that is, electronic health records (EHR). One of the most feasible methods for maintaining privacy is homomorphism encryption (HE). HE can combine different services without losing security or displaying sensitive data. HE is nothing but computations performed on encrypted data. According to the type of operations and limited number of operations performed on encrypted data, it is categorized into three types: partially homomorphic encryption (PHE), somewhat homomorphic encryption (SWHE), fully homomorphic encryption (FHE). HE method is very suitable for the EHR, which requires data privacy and security.


2020 ◽  
Author(s):  
M. Babenko ◽  
E. Shiriaev ◽  
A. Tchernykh ◽  
E. Golimblevskaia

Confidential data security is associated with the cryptographic primitives, asymmetric encryption, elliptic curve cryptography, homomorphic encryption, cryptographic pseudorandom sequence generators based on an elliptic curve, etc. For their efficient implementation is often used Residue Number System that allows executing additions and multiplications on parallel computing channels without bit carrying between channels. A critical operation in Residue Number System implementations of asymmetric cryptosystems is base extension. It refers to the computing a residue in the extended moduli without the application of the traditional Chinese Remainder Theorem algorithm. In this work, we propose a new way to perform base extensions using a Neural Network of a final ring. We show that it reduces 11.7% of the computational cost, compared with state-of-the-art approaches.


2021 ◽  
Author(s):  
Tamilarasi G ◽  
Rajiv Gandhi K ◽  
Palanisamy V

Abstract In recent days, vehicular ad hoc networks (VANETs) has gained significant interest in the field of intelligent transportation system (ITS) owing to the safety and preventive measures to the drivers and passengers. Regardless of the merits provided by VANET, it faces several issues, particularly with respect to security and privacy of users/messages. Because of the decentralized structure and dynamic topologies of VANET, it is hard to detect malicious or faulty nodes or users. With this motivation, this paper designs new privacy preserving partially homomorphic encryption with optimal key generation using improved grasshopper optimization algorithm (IGOA-PHE) technique in VANETs. The goal of the proposed IGOA-PHE technique aims to achieve privacy and security in VANET. The proposed IGOA-PHE technique involves two stage processes namely ElGamal public key cryptosystem (EGPKC) for PHE and IGOA based optimal key generation process. In order to improve the security of the EGPKC technique, the keys are optimally chosen using the IGOA. Besides, the IGOA is derived by incorporating the concepts of Gaussian mutation (GM) and Levy flights. The experimental analysis of the proposed IGOA-PHE technique is examined in a wide range of experiments. The resultant outcomes exhibited the maximum performance of the presented IGOA-PHE technique over the recent state of art methods.


Author(s):  
Lalit Mohan Gupta ◽  
Abdus Samad ◽  
Hitendra Garg

Healthcare today is one of the most promising, prevailing, and sensitive sectors where patient information like prescriptions, health records, etc., are kept on the cloud to provide high quality on-demand services for enhancing e-health services by reducing the burden of data storage and maintenance to providing information independent of location and time. The major issue with healthcare organization is to provide protected sharing of healthcare data from the cloud to the decision makers, medical practitioners, data analysts, and insurance firms by maintaining confidentiality and integrity. This article proposes a novel and secure threshold based encryption scheme combined with homomorphic properties (TBHM) for accessing cloud based health information. Homomorphic encryption completely eliminates the possibility of any kind of attack as data cannot be accessed using any type of key. The experimental results report superiority of TBHM scheme over state of art in terms throughput, file encryption/decryption time, key generation time, error rate, latency time, and security overheads.


2020 ◽  
Vol 5 (1) ◽  
pp. 479-484
Author(s):  
Hanife Çağıl Bozduman ◽  
Erkan Afacan

AbstractCryptology is defined as the science of making communication incomprehensible to third parties who have no right to read and understand the data or messages. Cryptology consists of two parts, namely, cryptography and cryptanalysis. Cryptography analyzes methods of encrypting messages, and cryptanalysis analyzes methods of decrypting encrypted messages. Encryption is the process of translating plaintext data into something that appears to be random and meaningless. Decryption is the process of converting this random text into plaintext. Cloud computing is the legal transfer of computing services over the Internet. Cloud services let individuals and businesses to use software and hardware resources at remote locations. Widespread use of cloud computing raises the question of whether it is possible to delegate the processing of data without giving access to it. However, homomorphic encryption allows performing computations on encrypted data without decryption. In homomorphic encryption, only the encrypted version of the data is given to the untrusted computer to process. The computer will perform the computation on this encrypted data, without knowing anything on its real value. Finally, it will send back the result, and whoever has the proper deciphering key can decrypt the cryptogram correctly. The decrypted result will be equal to the intended computed value. In this paper, homomorphic encryption and their types are reviewed. Also, a simulation of somewhat homomorphic encryption is examined.


2019 ◽  
Vol 15 (3) ◽  
pp. 273-279
Author(s):  
Shweta G. Rangari ◽  
Nishikant A. Raut ◽  
Pradip W. Dhore

Background:The unstable and/or toxic degradation products may form due to degradation of drug which results into loss of therapeutic activity and lead to life threatening condition. Hence, it is important to establish the stability characteristics of drug in various conditions such as in temperature, light, oxidising agent and susceptibility across a wide range of pH values.Introduction:The aim of the proposed study was to develop simple, sensitive and economic stability indicating high performance thin layer chromatography (HPTLC) method for the quantification of Amoxapine in the presence of degradation products.Methods:Amoxapine and its degraded products were separated on precoated silica gel 60F254 TLC plates by using mobile phase comprising of methanol: toluene: ammonium acetate (6:3:1, v/v/v). The densitometric evaluation was carried out at 320 nm in reflectance/absorbance mode. The degradation products obtained as per ICH guidelines under acidic, basic and oxidative conditions have different Rf values 0.12, 0.26 and 0.6 indicating good resolution from each other and pure drug with Rf: 0.47. Amoxapine was found to be stable under neutral, thermal and photo conditions.Results:The method was validated as per ICH Q2 (R1) guidelines in terms of accuracy, precision, ruggedness, robustness and linearity. A good linear relationship between concentration and response (peak area and peak height) over the range of 80 ng/spot to 720 ng/spot was observed from regression analysis data showing correlation coefficient 0.991 and 0.994 for area and height, respectively. The limit of detection (LOD) and limit of quantitation (LOQ) for area were found to be 1.176 ng/mL and 3.565 ng/mL, whereas for height, 50.063 ng/mL and 151.707 ng/mL respectively.Conclusion:The statistical analysis confirmed the accuracy, precision and selectivity of the proposed method which can be effectively used for the analysis of amoxapine in the presence of degradation products.


2019 ◽  
Vol 5 (4) ◽  
pp. 270-277 ◽  
Author(s):  
Vijay Kumar ◽  
Simranjeet Singh ◽  
Ragini Bhadouria ◽  
Ravindra Singh ◽  
Om Prakash

Holoptelea integrifolia Roxb. Planch (HI) has been used to treat various ailments including obesity, osteoarthritis, arthritis, inflammation, anemia, diabetes etc. To review the major phytochemicals and medicinal properties of HI, exhaustive bibliographic research was designed by means of various scientific search engines and databases. Only 12 phytochemicals have been reported including biologically active compounds like betulin, betulinic acid, epifriedlin, octacosanol, Friedlin, Holoptelin-A and Holoptelin-B. Analytical methods including the Thin Layer Chromatography (TLC), High-Performance Thin Layer Chromatography (HPTLC), High-Performance Liquid Chromatography (HPLC) and Liquid Chromatography With Mass Spectral (LC-MS) analysis have been used to analyze the HI. From medicinal potency point of view, these phytochemicals have a wide range of pharmacological activities such as antioxidant, antibacterial, anti-inflammatory, and anti-tumor. In the current review, it has been noticed that the mechanism of action of HI with biomolecules has not been fully explored. Pharmacology and toxicological studies are very few. This seems a huge literature gap to be fulfilled through the detailed in-vivo and in-vitro studies.


Proceedings ◽  
2020 ◽  
Vol 65 (1) ◽  
pp. 25
Author(s):  
Antonio Garrido Marijuan ◽  
Roberto Garay ◽  
Mikel Lumbreras ◽  
Víctor Sánchez ◽  
Olga Macias ◽  
...  

District heating networks deliver around 13% of the heating energy in the EU, being considered as a key element of the progressive decarbonization of Europe. The H2020 REnewable Low TEmperature District project (RELaTED) seeks to contribute to the energy decarbonization of these infrastructures through the development and demonstration of the following concepts: reduction in network temperature down to 50 °C, integration of renewable energies and waste heat sources with a novel substation concept, and improvement on building-integrated solar thermal systems. The coupling of renewable thermal sources with ultra-low temperature district heating (DH) allows for a bidirectional energy flow, using the DH as both thermal storage in periods of production surplus and a back-up heating source during consumption peaks. The ultra-low temperature enables the integration of a wide range of energy sources such as waste heat from industry. Furthermore, RELaTED also develops concepts concerning district heating-connected reversible heat pump systems that allow to reach adequate thermal levels for domestic hot water as well as the use of the network for district cooling with high performance. These developments will be demonstrated in four locations: Estonia, Serbia, Denmark, and Spain.


Author(s):  
Mikhail Selianinau

AbstractIn this paper, we deal with the critical problem of performing non-modular operations in the Residue Number System (RNS). The Chinese Remainder Theorem (CRT) is widely used in many modern computer applications. Throughout the article, an efficient approach for implementing the CRT algorithm is described. The structure of the rank of an RNS number, a principal positional characteristic of the residue code, is investigated. It is shown that the rank of a number can be represented by a sum of an inexact rank and a two-valued correction to it. We propose a new variant of minimally redundant RNS, which provides low computational complexity for the rank calculation, and its effectiveness analyzed concerning conventional non-redundant RNS. Owing to the extension of the residue code, by adding the excess residue modulo 2, the complexity of the rank calculation goes down from $O\left (k^{2}\right )$ O k 2 to $O\left (k\right )$ O k with respect to required modular addition operations and lookup tables, where k equals the number of non-redundant RNS moduli.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 37
Author(s):  
Mayra K. S. Monteiro ◽  
Djalma R. Da Silva ◽  
Marco A. Quiroz ◽  
Vítor J. P. Vilar ◽  
Carlos A. Martínez-Huitle ◽  
...  

This study aims to investigate the applicability of a hybrid electrochemical sensor composed of cork and graphite (Gr) for detecting caffeine in aqueous solutions. Raw cork (RAC) and regranulated cork (RGC, obtained by thermal treatment of RAC with steam at 380 °C) were tested as modifiers. The results clearly showed that the cork-graphite sensors, GrRAC and GrRGC, exhibited a linear response over a wide range of caffeine concentration (5–1000 µM), with R2 of 0.99 and 0.98, respectively. The limits of detection (LOD), estimated at 2.9 and 6.1 µM for GrRAC and GrRGC, suggest greater sensitivity and reproducibility than the unmodified conventional graphite sensor. The low-cost cork-graphite sensors were successfully applied in the determination of caffeine in soft drinks and pharmaceutical formulations, presenting well-defined current signals when analyzing real samples. When comparing electrochemical determinations and high performance liquid chromatography measurements, no significant differences were observed (mean accuracy 3.0%), highlighting the potential use of these sensors to determine caffeine in different samples.


Sign in / Sign up

Export Citation Format

Share Document