A Distance-Window Approach for the Continuous Processing of Spatial Data Streams

Author(s):  
Salman Ahmed Shaikh ◽  
Akiyoshi Matono ◽  
Kyoung-Sook Kim

Real-time and continuous processing of citywide spatial data is an essential requirement of smart cities to guarantee the delivery of basic life necessities to its residents and to maintain law and order. To support real-time continuous processing of data streams, continuous queries (CQs) are used. CQs utilize windows to split the unbounded data streams into finite sets or windows. Existing stream processing engines either support time-based or count-based windows. However, these are not much useful for the spatial streams containing the trajectories of moving objects. Hence, this paper presents a distance-window based approach for the processing of spatial data streams, where the unbounded streams can be split with respect to the trajectory length. Since the window operation involves repeated computation, this work presents two incremental distance-based window approaches to avoid the repetition. A detailed experimental evaluation is presented to prove the effectiveness of the proposed incremental distance-based windows.

Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1372 ◽  
Author(s):  
Manuel Garcia Alvarez ◽  
Javier Morales ◽  
Menno-Jan Kraak

Smart cities are urban environments where Internet of Things (IoT) devices provide a continuous source of data about urban phenomena such as traffic and air pollution. The exploitation of the spatial properties of data enables situation and context awareness. However, the integration and analysis of data from IoT sensing devices remain a crucial challenge for the development of IoT applications in smart cities. Existing approaches provide no or limited ability to perform spatial data analysis, even when spatial information plays a significant role in decision making across many disciplines. This work proposes a generic approach to enabling spatiotemporal capabilities in information services for smart cities. We adopted a multidisciplinary approach to achieving data integration and real-time processing, and developed a reference architecture for the development of event-driven applications. This type of applications seamlessly integrates IoT sensing devices, complex event processing, and spatiotemporal analytics through a processing workflow for the detection of geographic events. Through the implementation and testing of a system prototype, built upon an existing sensor network, we demonstrated the feasibility, performance, and scalability of event-driven applications to achieve real-time processing capabilities and detect geographic events.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4160
Author(s):  
Isam Mashhour Al Jawarneh ◽  
Paolo Bellavista ◽  
Antonio Corradi ◽  
Luca Foschini ◽  
Rebecca Montanari

Large amounts of georeferenced data streams arrive daily to stream processing systems. This is attributable to the overabundance of affordable IoT devices. In addition, interested practitioners desire to exploit Internet of Things (IoT) data streams for strategic decision-making purposes. However, mobility data are highly skewed and their arrival rates fluctuate. This nature poses an extra challenge on data stream processing systems, which are required in order to achieve pre-specified latency and accuracy goals. In this paper, we propose ApproxSSPS, which is a system for approximate processing of geo-referenced mobility data, at scale with quality of service guarantees. We focus on stateful aggregations (e.g., means, counts) and top-N queries. ApproxSSPS features a controller that interactively learns the latency statistics and calculates proper sampling rates to meet latency or/and accuracy targets. An overarching trait of ApproxSSPS is its ability to strike a plausible balance between latency and accuracy targets. We evaluate ApproxSSPS on Apache Spark Structured Streaming with real mobility data. We also compared ApproxSSPS against a state-of-the-art online adaptive processing system. Our extensive experiments prove that ApproxSSPS can fulfill latency and accuracy targets with varying sets of parameter configurations and load intensities (i.e., transient peaks in data loads versus slow arriving streams). Moreover, our results show that ApproxSSPS outperforms the baseline counterpart by significant magnitudes. In short, ApproxSSPS is a novel spatial data stream processing system that can deliver real accurate results in a timely manner, by dynamically specifying the limits on data samples.


2019 ◽  
Vol 11 (20) ◽  
pp. 5648 ◽  
Author(s):  
Changfeng Jing ◽  
Mingyi Du ◽  
Songnian Li ◽  
Siyuan Liu

Geospatial dashboards have attracted increasing attention from both user communities and academic researchers since the late 1990s. Dashboards can gather, visualize, analyze and advise on urban performance to support sustainable development of smart cities. We conducted a critical review of the research and development of geospatial dashboards, including the integration of maps, spatial data analytics, and geographic visualization for decision support and real-time monitoring of smart city performance. The research about this kind of system has mainly focused on indicators, information models including statistical models and geospatial models, and other related issues. This paper presents an overview of dashboard history and key technologies and applications in smart cities, and summarizes major research progress and representative developments by analyzing their key technical issues. Based on the review, we discuss the visualization model and validity of models for decision support and real-time monitoring that need to be further researched, and recommend some future research directions.


Author(s):  
D. Bhattacharya ◽  
M. Painho

The paper endeavours to enhance the Sensor Web with crucial geospatial analysis capabilities through integration with Spatial Data Infrastructure. The objective is development of automated smart cities intelligence system (SMACiSYS) with sensor-web access (SENSDI) utilizing geomatics for sustainable societies. There has been a need to develop automated integrated system to categorize events and issue information that reaches users directly. At present, no web-enabled information system exists which can disseminate messages after events evaluation in real time. Research work formalizes a notion of an integrated, independent, generalized, and automated geo-event analysing system making use of geo-spatial data under popular usage platform. Integrating Sensor Web With Spatial Data Infrastructures (SENSDI) aims to extend SDIs with sensor web enablement, converging geospatial and built infrastructure, and implement test cases with sensor data and SDI. The other benefit, conversely, is the expansion of spatial data infrastructure to utilize sensor web, dynamically and in real time for smart applications that smarter cities demand nowadays. Hence, SENSDI augments existing smart cities platforms utilizing sensor web and spatial information achieved by coupling pairs of otherwise disjoint interfaces and APIs formulated by Open Geospatial Consortium (OGC) keeping entire platform open access and open source. SENSDI is based on Geonode, QGIS and Java, that bind most of the functionalities of Internet, sensor web and nowadays Internet of Things superseding Internet of Sensors as well. In a nutshell, the project delivers a generalized real-time accessible and analysable platform for sensing the environment and mapping the captured information for optimal decision-making and societal benefit.


2016 ◽  
Vol 11 (4) ◽  
pp. 324
Author(s):  
Nor Nadirah Abdul Aziz ◽  
Yasir Mohd Mustafah ◽  
Amelia Wong Azman ◽  
Amir Akramin Shafie ◽  
Muhammad Izad Yusoff ◽  
...  

Author(s):  
LAKSHMI PRANEETHA

Now-a-days data streams or information streams are gigantic and quick changing. The usage of information streams can fluctuate from basic logical, scientific applications to vital business and money related ones. The useful information is abstracted from the stream and represented in the form of micro-clusters in the online phase. In offline phase micro-clusters are merged to form the macro clusters. DBSTREAM technique captures the density between micro-clusters by means of a shared density graph in the online phase. The density data in this graph is then used in reclustering for improving the formation of clusters but DBSTREAM takes more time in handling the corrupted data points In this paper an early pruning algorithm is used before pre-processing of information and a bloom filter is used for recognizing the corrupted information. Our experiments on real time datasets shows that using this approach improves the efficiency of macro-clusters by 90% and increases the generation of more number of micro-clusters within in a short time.


2020 ◽  
Vol 86 (4) ◽  
pp. 61-65
Author(s):  
M. V. Abramchuk ◽  
R. V. Pechenko ◽  
K. A. Nuzhdin ◽  
V. M. Musalimov

A reciprocating friction machine Tribal-T intended for automated quality control of the rubbing surfaces of tribopairs is described. The distinctive feature of the machine consists in implementation of the forced relative motion due to the frictional interaction of the rubbing surfaces fixed on the drive and conjugate platforms. Continuous processing of the signals from displacement sensors is carried out under conditions of continuous recording of mutual displacements of loaded tribopairs using classical approaches of the theory of automatic control to identify the tribological characteristics. The machine provides consistent visual real time monitoring of the parameters. The MATLAB based computer technologies are actively used in data processing. The calculated tribological characteristics of materials, i.e., the dynamic friction coefficient, damping coefficient and measure of the surface roughness, are presented. The tests revealed that a Tribal-T reciprocating friction machine is effective for real-time study of the aforementioned tribological characteristics of materials and can be used for monitoring of the condition of tribo-nodes of machines and mechanisms.


2018 ◽  
Vol 935 (5) ◽  
pp. 54-63
Author(s):  
A.A. Maiorov ◽  
A.V. Materuhin ◽  
I.N. Kondaurov

Geoinformation technologies are now becoming “end-to-end” technologies of the new digital economy. There is a need for solutions for efficient processing of spatial and spatio-temporal data that could be applied in various sectors of this new economy. Such solutions are necessary, for example, for cyberphysical systems. Essential components of cyberphysical systems are high-performance and easy-scalable data acquisition systems based on smart geosensor networks. This article discusses the problem of choosing a software environment for this kind of systems, provides a review and a comparative analysis of various open source software environments designed for large spatial data and spatial-temporal data streams processing in computer clusters. It is shown that the software framework STARK can be used to process spatial-temporal data streams in spatial-temporal data streams. An extension of the STARK class system based on the type system for spatial-temporal data streams developed by one of the authors of this article is proposed. The models and data representations obtained as a result of the proposed expansion can be used not only for processing spatial-temporal data streams in data acquisition systems based on smart geosensor networks, but also for processing spatial-temporal data streams in various purposes geoinformation systems that use processing data in computer clusters.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4916
Author(s):  
Ali Usman Gondal ◽  
Muhammad Imran Sadiq ◽  
Tariq Ali ◽  
Muhammad Irfan ◽  
Ahmad Shaf ◽  
...  

Urbanization is a big concern for both developed and developing countries in recent years. People shift themselves and their families to urban areas for the sake of better education and a modern lifestyle. Due to rapid urbanization, cities are facing huge challenges, one of which is waste management, as the volume of waste is directly proportional to the people living in the city. The municipalities and the city administrations use the traditional wastage classification techniques which are manual, very slow, inefficient and costly. Therefore, automatic waste classification and management is essential for the cities that are being urbanized for the better recycling of waste. Better recycling of waste gives the opportunity to reduce the amount of waste sent to landfills by reducing the need to collect new raw material. In this paper, the idea of a real-time smart waste classification model is presented that uses a hybrid approach to classify waste into various classes. Two machine learning models, a multilayer perceptron and multilayer convolutional neural network (ML-CNN), are implemented. The multilayer perceptron is used to provide binary classification, i.e., metal or non-metal waste, and the CNN identifies the class of non-metal waste. A camera is placed in front of the waste conveyor belt, which takes a picture of the waste and classifies it. Upon successful classification, an automatic hand hammer is used to push the waste into the assigned labeled bucket. Experiments were carried out in a real-time environment with image segmentation. The training, testing, and validation accuracy of the purposed model was 0.99% under different training batches with different input features.


Sign in / Sign up

Export Citation Format

Share Document