scholarly journals Geospatial Dashboards for Monitoring Smart City Performance

2019 ◽  
Vol 11 (20) ◽  
pp. 5648 ◽  
Author(s):  
Changfeng Jing ◽  
Mingyi Du ◽  
Songnian Li ◽  
Siyuan Liu

Geospatial dashboards have attracted increasing attention from both user communities and academic researchers since the late 1990s. Dashboards can gather, visualize, analyze and advise on urban performance to support sustainable development of smart cities. We conducted a critical review of the research and development of geospatial dashboards, including the integration of maps, spatial data analytics, and geographic visualization for decision support and real-time monitoring of smart city performance. The research about this kind of system has mainly focused on indicators, information models including statistical models and geospatial models, and other related issues. This paper presents an overview of dashboard history and key technologies and applications in smart cities, and summarizes major research progress and representative developments by analyzing their key technical issues. Based on the review, we discuss the visualization model and validity of models for decision support and real-time monitoring that need to be further researched, and recommend some future research directions.

Author(s):  
Ivan Jezdović ◽  
Snežana Popović ◽  
Miloš Radenković ◽  
Aleksandra Labus ◽  
Zorica Bogdanović

2016 ◽  
Vol 12 (2) ◽  
pp. 77-93 ◽  
Author(s):  
Leonidas Anthopoulos ◽  
Marijn Janssen ◽  
Vishanth Weerakkody

Smart cities have attracted an extensive and emerging interest from both science and industry with an increasing number of international examples emerging from all over the world. However, despite the significant role that smart cities can play to deal with recent urban challenges, the concept has been being criticized for not being able to realize its potential and for being a vendor hype. This paper reviews different conceptualization, benchmarks and evaluations of the smart city concept. Eight different classes of smart city conceptualization models have been discovered, which structure the unified conceptualization model and concern smart city facilities (i.e., energy, water, IoT etc.), services (i.e., health, education etc.), governance, planning and management, architecture, data and people. Benchmarking though is still ambiguous and different perspectives are followed by the researchers that measure -and recently monitor- various factors, which somehow exceed typical technological or urban characteristics. This can be attributed to the broadness of the smart city concept. This paper sheds light to parameters that can be measured and controlled in an attempt to improve smart city potential and leaves space for corresponding future research. More specifically, smart city progress, local capacity, vulnerabilities for resilience and policy impact are only some of the variants that scholars pay attention to measure and control.


2021 ◽  
Author(s):  
FARZAN SHENAVARMASOULEH ◽  
Farid Ghareh Mohammadi ◽  
M. Hadi Amini ◽  
Hamid R. Arabnia

<div>A smart city can be seen as a framework, comprised of Information and Communication Technologies (ICT). An intelligent network of connected devices that collect data with their sensors and transmit them using wireless and cloud technologies in order to communicate with other assets in the ecosystem plays a pivotal role in this framework. Maximizing the quality of life of citizens, making better use of available resources, cutting costs, and improving sustainability are the ultimate goals that a smart city is after. Hence, data collected from these connected devices will continuously get thoroughly analyzed to gain better insights into the services that are being offered across the city; with this goal in mind that they can be used to make the whole system more efficient.</div><div>Robots and physical machines are inseparable parts of a smart city. Embodied AI is the field of study that takes a deeper look into these and explores how they can fit into real-world environments. It focuses on learning through interaction with the surrounding environment, as opposed to Internet AI which tries to learn from static datasets. Embodied AI aims to train an agent that can See (Computer Vision), Talk (NLP), Navigate and Interact with its environment (Reinforcement Learning), and Reason (General Intelligence), all at the same time. Autonomous driving cars and personal companions are some of the examples that benefit from Embodied AI nowadays.</div><div>In this paper, we attempt to do a concise review of this field. We will go through its definitions, its characteristics, and its current achievements along with different algorithms, approaches, and solutions that are being used in different components of it (e.g. Vision, NLP, RL). We will then explore all the available simulators and 3D interactable databases that will make the research in this area feasible. Finally, we will address its challenges and identify its potentials for future research.</div>


2021 ◽  
Author(s):  
Romak Kordnejad

This thesis focuses on the current state of combined sewer overflows (CSO) in the City of Toronto and the potential benefits of utilizing real-time monitoring system to explore options for optimizing current models and reducing future overflows. CSOs containing sanitary and stormwater sewage over spill during wet weather conditions, contaminating bodies of water. Antiquated sewer systems built to support population at the time, no longer have the required capacity to support exponential growth causing environmental damage. Key research findings include exploring the current CSO state in the City of Toronto, remediation plans executed by the City in hopes to reduce CSO and finally concluding the City’s progress to date. Extensive research on CSOs in North American cities has shown initiative towards reducing CSOs while using real-time monitoring systems which can be utilized in the City of Toronto. Future research is required to find effective and efficient ways of implementing such systems.


Author(s):  
Suresh P. ◽  
Keerthika P. ◽  
Sathiyamoorthi V. ◽  
Logeswaran K. ◽  
Manjula Devi R. ◽  
...  

Cloud computing and big data analytics are the key parts of smart city development that can create reliable, secure, healthier, more informed communities while producing tremendous data to the public and private sectors. Since the various sectors of smart cities generate enormous amounts of streaming data from sensors and other devices, storing and analyzing this huge real-time data typically entail significant computing capacity. Most smart city solutions use a combination of core technologies such as computing, storage, databases, data warehouses, and advanced technologies such as analytics on big data, real-time streaming data, artificial intelligence, machine learning, and the internet of things (IoT). This chapter presents a theoretical and experimental perspective on the smart city services such as smart healthcare, water management, education, transportation and traffic management, and smart grid that are offered using big data management and cloud-based analytics services.


Author(s):  
Yannis Charalabidis ◽  
Christina Theocharopoulou

One of the most critical issues relating to smart cities is the selection of the most suited interventions, among numerous available options. Especially when medium-sized municipalities are concerned that typically have less capabilities and available expertise, the need for a methodological framework for supporting the selection of possible interventions is profound. The aim of this article is to propose such a participative method for investigating the sectors in which a municipality could take actions, and for deciding on possible interventions. The approach includes citizens' opinion, municipality policy, and the organizational, technological and economic status of the municipality, as well as best practices from other smart cities. This way, a multi-criteria decision support model was developed, in order to select the best application scenarios for a medium-sized municipality. The model was applied in Samos Island in Greece, revealing that citizens show great interest in the development of smart applications. The whole approach can be easily applied, with the proper modifications, in a large variety of cities, offering a useful tool to decision makers and societies.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 170 ◽  
Author(s):  
Daniel G. Costa ◽  
Francisco Vasques ◽  
Paulo Portugal ◽  
Ana Aguiar

The development of efficient sensing technologies and the maturation of the Internet of Things (IoT) paradigm and related protocols have considerably fostered the expansion of sensor-based monitoring applications. A great number of those applications has been developed to monitor a set of information for better perception of the environment, with some of them being dedicated to identifying emergency situations. Current IoT-based emergency systems have limitations when considering the broader scope of smart cities, exploiting one or just a few monitoring variables or even allocating high computational burden to regular sensor nodes. In this context, we propose a distributed multi-tier emergency alerting system built around a number of sensor-based event detection units, providing real-time georeferenced information about the occurrence of critical events, while taking as input a configurable number of different scalar sensors and GPS data. The proposed system could then be used to detect and to deliver emergency alarms, which are computed based on the detected events, the previously known risk level of the affected areas and temporal information. Doing so, modularized and flexible perceptions of critical events are provided, according to the particularities of each considered smart city scenario. Besides implementing the proposed system in open-source electronic platforms, we also created a real-time visualization application to dynamically display emergency alarms on a map, demonstrating a feasible and useful application of the system as a supporting service. Therefore, this innovative approach and its corresponding physical implementation can bring valuable results for smart cities, potentially supporting the development of adaptive IoT-based emergency-aware applications.


2020 ◽  
Vol 1 (1) ◽  
pp. 7-13
Author(s):  
Bayu Prastyo ◽  
Faiz Syaikhoni Aziz ◽  
Wahyu Pribadi ◽  
A.N. Afandi

Internet use in Banyumas Regency is now increasingly diverse according to the demands of the needs. The development of communication technology raises various aspects that also develop. For example, the use of the internet for a traffic light control system so that it can be adjusted according to the settings and can be monitored in real time. In the development of communication technology, the term Internet of Things (IoT) emerged as the concept of extending the benefits of internet communication systems to give impulses to other systems. In other words, IoT is used as a communication for remote control and monitoring by utilizing an internet connection. The Internet of Things in the era is now being developed to create an intelligent system for the purposes of controlling various public needs until the concept of the smart city emerges. Basically, smart cities utilize internet connections for many purposes such as controlling CCTV, traffic lights, controlling arm robots in the industry and storing data in hospitals. If the system is carried out directly from the device to the central server, there will be a very long queue of data while the system created requires speed and accuracy of time so that a system is needed that allows sufficient data control and processing to be carried out on network edge users. Then fog Computing is used with the hope that the smart city system can work with small latency values ​​so that the system is more real-time in sending or receiving data.


2017 ◽  
Vol 8 (1) ◽  
pp. 45-58 ◽  
Author(s):  
Mimoza Bogdanoska Jovanovska ◽  
Daniela Koltovska Nechoska

Abstract Smart City as a concept presupposes using new information and communication technologies in order to improve the quality of life within a particular geographic area. There are six different pillars in the frame of this concept and their one purpose is to achieve better efficiency of city operations. Smart mobility and transport are some of them. The efforts of traditional cities to become smart are not easily and quickly achievable. Numerous traffic solutions have already been implemented in different cities all over the world that make the ‘jump’ from traditional city to smart city. This paper provides an overview of the ‘smart’ transport solutions that have been implemented in the city of Skopje as a traditional city, which is on its way to becoming a smart city. The presented smart solutions are related to traffic management and control area and are aimed at alleviating traffic problems. The focus is on non-motorized solutions, e-vehicles, adaptive traffic control systems and public transport solutions. Several aims have been set in this paper – to promote the achievements of the municipality of Skopje aimed at transforming Skopje into a smart city in a transport area; to present its functionality, and to point out the disadvantages related to law regulations and the interconnection of all stakeholders involved. Finally, the idea is to provide a starting point for future research and to recommend future steps in this direction in the city of Skopje.


2020 ◽  
Vol 1 (2) ◽  
pp. 6-13
Author(s):  
Bayu Prastyo ◽  
Faiz Syaikhoni Aziz ◽  
Wahyu Pribadi ◽  
A.N. Afandi

Internet use in Banyumas Regency is now increasingly diverse according to the demands of the needs. The development of communication technology raises various aspects that also develop. For example, the use of the internet for a traffic light control system so that it can be adjusted according to the settings and can be monitored in real time. In the development of communication technology, the term Internet of Things (IoT) emerged as the concept of extending the benefits of internet communication systems to give impulses to other systems. In other words, IoT is used as a communication for remote control and monitoring by utilizing an internet connection. The Internet of Things in the era is now being developed to create an intelligent system for the purposes of controlling various public needs until the concept of the smart city emerges. Basically, smart cities utilize internet connections for many purposes such as controlling CCTV, traffic lights, controlling arm robots in the industry and storing data in hospitals. If the system is carried out directly from the device to the central server, there will be a very long queue of data while the system created requires speed and accuracy of time so that a system is needed that allows sufficient data control and processing to be carried out on network edge users. Then fog Computing is used with the hope that the smart city system can work with small latency values ​​so that the system is more real-time in sending or receiving data


Sign in / Sign up

Export Citation Format

Share Document