Repurposing of Potent Mtase Inhibitors Against ZIKV Utilizing Structure-Based Molecular Docking

Author(s):  
Sisir Nandi ◽  
Aaliya Naaz ◽  
Mridula Saxena

Zika is an Aedes mosquito vector-borne pandemic viral disease. It is a goal for the scientists to destroy the virus completely by generating potent inhibitors. To explore the disease mechanism, various zika viral targets were explored. One of the major targets is Methyltransferase (Mtase), which is common with zika virus (ZIKV), dengue virus (DENV), and West Nile virus (WNV) belonging to the family of Flaviviridae. Therefore, an attempt has been made here to quest dengue virus and West Nile virus Mtase inhibitors, which could be repurposed on Zika virus inhibition by structure-based docking studies. The mode of interactions of 25 DENV and WNV inhibitors has been compared with natural reference drug sinefungin, which is a specific dengue virus and West Nile virus methyl transferase inhibitor. The docking results of compound numbers 4, 6, 10, 12, 13, 17, 18, and 20 exhibit the same mode of interaction with sinefungin. Therefore, these compounds could be proposed for a further experimental investigation to combat zika.

2019 ◽  
Vol 268 ◽  
pp. 53-55 ◽  
Author(s):  
José A. Boga ◽  
Marta E. Alvarez-Arguelles ◽  
Susana Rojo-Alba ◽  
Mercedes Rodríguez ◽  
María de Oña ◽  
...  

mBio ◽  
2016 ◽  
Vol 7 (5) ◽  
Author(s):  
Leslie Goo ◽  
Kimberly A. Dowd ◽  
Alexander R. Y. Smith ◽  
Rebecca S. Pelc ◽  
Christina R. DeMaso ◽  
...  

ABSTRACT Zika virus (ZIKV) is a flavivirus that has emerged as a global health threat due in part to its association with congenital abnormalities. Other globally relevant flaviviruses include dengue virus (DENV) and West Nile virus (WNV). High-resolution structures of ZIKV reveal many similarities to DENV and suggest some differences, including an extended glycan loop (D. Sirohi, Z. Chen, L. Sun, T. Klose, T. C. Pierson, et al., 352:467–470, 2016, http://dx.doi.org/10.1126/science.aaf5316) and unique interactions among envelope (E) protein residues that were proposed to confer increased virion stability and contribute mechanistically to the distinctive pathobiology of ZIKV (V. A. Kostyuchenko, E. X. Lim, S. Zhang, G. Fibriansah, T. S. Ng, et al., Nature 533:425–428, 2016, http://dx.doi.org/10.1038/nature17994). However, in the latter study, virus stability was inferred by measuring the loss of infectivity following a short incubation period. Here, we rigorously assessed the relative stability of ZIKV, DENV, and WNV by measuring changes in infectivity following prolonged incubation at physiological temperatures. At 37°C, the half-life of ZIKV was approximately twice as long as the half-life of DENV (11.8 and 5.2 h, respectively) but shorter than that of WNV (17.7 h). Incubation at 40°C accelerated the loss of ZIKV infectivity. Increasing virion maturation efficiency modestly increased ZIKV stability, as observed previously with WNV and DENV. Finally, mutations at E residues predicted to confer increased stability to ZIKV did not affect virion half-life. Our results demonstrate that ZIKV is not uniquely stable relative to other flaviviruses, suggesting that its unique pathobiology is explained by an alternative mechanism. IMPORTANCE Zika virus (ZIKV) belongs to the Flavivirus genus, which includes other clinically relevant mosquito-borne pathogens such as dengue virus (DENV) and West Nile virus (WNV). Historically, ZIKV infection was characterized by a self-limiting, mild disease, but recent outbreaks have been associated with severe clinical complications, including Guillain-Barré syndrome and microcephaly, which are atypical of other flavivirus infections. Moreover, ZIKV has been detected in saliva, urine, and semen, and it may be sexually transmitted. Analysis of a high-resolution cryo-electron microscopic reconstruction of ZIKV hypothesized that the unusual stability of this virus contributes to its distinctive pathobiology. Here, we directly compared the stability of ZIKV to that of other flaviviruses following prolonged incubation in solution at physiological temperatures. We found that the stability of multiple ZIKV strains, including those from recent outbreaks, is intermediate between that of DENV and WNV, suggesting an alternative explanation for the unique clinical manifestations of ZIKV infection.


2019 ◽  
Vol 93 (15) ◽  
Author(s):  
Federico Valdez ◽  
Julienne Salvador ◽  
Pedro M. Palermo ◽  
Jonathon E. Mohl ◽  
Kathryn A. Hanley ◽  
...  

ABSTRACTSchlafen 11 (Slfn11) is an interferon-stimulated gene that controls the synthesis of proteins by regulating tRNA abundance. Likely through this mechanism, Slfn11 has previously been shown to impair human immunodeficiency virus type 1 (HIV-1) infection and the expression of codon-biased open reading frames. Because replication of positive-sense single-stranded RNA [(+)ssRNA] viruses requires the immediate translation of the incoming viral genome, whereas negative-sense single-stranded RNA [(−)ssRNA] viruses carry at infection an RNA replicase that makes multiple translation-competent copies of the incoming viral genome, we reasoned that (+)ssRNA viruses will be more sensitive to the effect of Slfn11 on protein synthesis than (−)ssRNA viruses. To evaluate this hypothesis, we tested the effects of Slfn11 on the replication of a panel of ssRNA viruses in the human glioblastoma cell line A172, which naturally expresses Slfn11. Depletion of Slfn11 significantly increased the replication of (+)ssRNA viruses from theFlavivirusgenus, including West Nile virus (WNV), dengue virus (DENV), and Zika virus (ZIKV), but had no significant effect on the replication of the (−)ssRNA viruses vesicular stomatitis virus (VSV) (Rhabdoviridaefamily) and Rift Valley fever virus (RVFV) (Phenuiviridaefamily). Quantification of the ratio of genome-containing viral particles to PFU indicated that Slfn11 impairs WNV infectivity. Intriguingly, Slfn11 prevented WNV-induced downregulation of a subset of tRNAs implicated in the translation of 11.8% of the viral polyprotein. Low-abundance tRNAs might promote optimal protein folding and enhance viral infectivity, as previously reported. In summary, this study demonstrates that Slfn11 restricts flavivirus replication by impairing viral infectivity.IMPORTANCEWe provide evidence that the cellular protein Schlafen 11 (Slfn11) impairs replication of flaviviruses, including West Nile virus (WNV), dengue virus (DENV), and Zika virus (ZIKV). However, replication of single-stranded negative RNA viruses was not affected. Specifically, Slfn11 decreases the infectivity of WNV potentially by preventing virus-induced modifications of the host tRNA repertoire that could lead to enhanced viral protein folding. Furthermore, we demonstrate that Slfn11 is not the limiting factor of this novel broad antiviral pathway.


2016 ◽  
Vol 4 (2) ◽  
Author(s):  
Luh Ade Wilan Krisna

Virus Zika (ZIKV) adalah flavivirus yang berhubungan dengan dengue, virus demam kuning, virus Japanese encephalitis dan virus west nile. Virus tersebut menyebabkan infeksi melalui gigitan nyamuk yang dikenal sebagai demam zika atau penyakit zika. Virus zika baru-baru ini menarik perhatian dunia pada pertengahan tahun 2016 karena adanya explosive pandemic di berbagai negara, termasuk di Indonesia. Penelitian telah menemukan bukti bahwa Zika dapat berhubungan dengan cacat kelahiran dan kondisi syaraf seperti microcephaly dan sindrom Guillain-Barre pada orang dewasa. Kata kunci: Zika virus, flavivirus, microcephaly, Guillain-Barre Syndrome


2017 ◽  
Vol 8 ◽  
Author(s):  
Ángela Vázquez-Calvo ◽  
Nereida Jiménez de Oya ◽  
Miguel A. Martín-Acebes ◽  
Emilia Garcia-Moruno ◽  
Juan-Carlos Saiz

Cell ◽  
2009 ◽  
Vol 139 (7) ◽  
pp. 1243-1254 ◽  
Author(s):  
Abraham L. Brass ◽  
I-Chueh Huang ◽  
Yair Benita ◽  
Sinu P. John ◽  
Manoj N. Krishnan ◽  
...  

Author(s):  
Matthew Finn

West Nile virus (WNV) is a single-stranded RNA virus of the Flavivirus family that is transmitted via a mosquito vector, typically causing fever and capable of causing meningoencephalitis. Although mortality is low, it can lead to debilitating neuroinvasive disease in some patients. WNV is a leading cause of domestically-acquired arboviral disease and most commonly occurs in late August and early September. Consider WNV in otherwise unexplained cases of meningitis or encephalitis. Initial testing should consist of cerebrospinal fluid (CSF) analysis and West Nile immunoglobulin M enzyme-linked immunosorbent assay in serum and/or CSF. WNV is a nationally notifiable disease. Prevention remains the key to controlling this disease. Reducing the breeding grounds of the Culex mosquito and using insect repellant to prevent bites are two important strategies.


2010 ◽  
Vol 84 (16) ◽  
pp. 8332-8341 ◽  
Author(s):  
Dong Jiang ◽  
Jessica M. Weidner ◽  
Min Qing ◽  
Xiao-Ben Pan ◽  
Haitao Guo ◽  
...  

ABSTRACT Interferons (IFNs) are key mediators of the host innate antiviral immune response. To identify IFN-stimulated genes (ISGs) that instigate an antiviral state against two medically important flaviviruses, West Nile virus (WNV) and dengue virus (DENV), we tested 36 ISGs that are commonly induced by IFN-α for antiviral activity against the two viruses. We discovered that five ISGs efficiently suppressed WNV and/or DENV infection when they were individually expressed in HEK293 cells. Mechanistic analyses revealed that two structurally related cell plasma membrane proteins, IFITM2 and IFITM3, disrupted early steps (entry and/or uncoating) of the viral infection. In contrast, three IFN-induced cellular enzymes, viperin, ISG20, and double-stranded-RNA-activated protein kinase, inhibited steps in viral proteins and/or RNA biosynthesis. Our results thus imply that the antiviral activity of IFN-α is collectively mediated by a panel of ISGs that disrupt multiple steps of the DENV and WNV life cycles.


Sign in / Sign up

Export Citation Format

Share Document