Sustainable Analysis of Process Parameters during TIG welding of dissimilar joining between 304 Stainless Steel and AISI 1018 Mild Steel

The present work investigates TIG in terms of strength and energy consumption during joining of dissimilar metal plates between 304 Stainless Steel and AISI 1018 Mild Steel. TIG welding basically promotes a sustainable environment because it consumes less energy. Energy conservation means to reduce imbalance between demand and energy supply that is necessary to protect ecological resources and natural environment. TIG welding is a precision welding process which makes possible for joining of thinner and lighter materials. Joining of various dissimilar metals becomes great interest owing to the different challenges that are posed by deviation in the material composition as well as the characteristics of the joined metals. The main objective is to optimize energy consumption and tensile strength by taking effective process parameters that are Current, Travel Speed and Gas Flow Rate and also determination of main influential process parameters on energy consumption and tensile strength by using Taguchi method. Contour plot has also been shown in this present investigation.

The present work analyses MIG in terms of strength and consumption of energy during joining of similar AISI 1018 Mild Steel plates. Sustainable manufacturing is the creation of various manufactured products that generally use different processes that will minimize negative impact on environment, conserve natural resources and energy, are also safe for the employees, consumers and communities as well as economically sound. Sustainable manufacturing highlights on the necessity of an energy effective process that optimize consumption of energy. AISI 1018 mild steel is extensively used in automotive industries for pins, worms, dowels gears, non-critical tool components etc. Main important output responses are Tensile Strength and energy consumption during MIG Welding Process by taking Current, Travel Speed and Voltage as effective input variables. The main objective is to optimize energy consumption as well as tensile strength also determination of main influential process parameters on energy Consumption and tensile strength by using Taguchi Method. Contour plot has been also shown.


2016 ◽  
Vol 13 (1) ◽  
pp. 6-11
Author(s):  
Nabendu Ghosh ◽  
Pradip Kumar ◽  
Goutam Nandi

Abstract Welding input process parameters play a very significant role in determining the quality of the welded joint. Only by properly controlling every element of the process can product quality be controlled. For better quality of MIG welding of Ferritic stainless steel AISI 409, precise control of process parameters, parametric optimization of the process parameters, prediction and control of the desired responses (quality indices) etc., continued and elaborate experiments, analysis and modeling are needed. A data of knowledge - base may thus be generated which may be utilized by the practicing engineers and technicians to produce good quality weld more precisely, reliably and predictively. In the present work, X-ray radiographic test has been conducted in order to detect surface and sub-surface defects of weld specimens made of Ferritic stainless steel. The quality of the weld has been evaluated in terms of yield strength, ultimate tensile strength and percentage of elongation of the welded specimens. The observed data have been interpreted, discussed and analyzed by considering ultimate tensile strength ,yield strength and percentage elongation combined with use of Grey-Taguchi methodology.


2018 ◽  
Vol 777 ◽  
pp. 377-380
Author(s):  
Min Hu

To improve the welding performance and guarantee the quality of welds, this paper mainly starts with reasonably selecting welding materials before welding, choosing appropriate welding process parameters, paying full attention to the welding operation skills of positioning welding, base coating, filling and cap welding, to study horizontal TIG welding process of 1Cr18Ni9Ti stainless steel tube, and prevent the generation of hot crack defects.


Author(s):  
Sandip Mondal ◽  
Goutam Nandi ◽  
Pradip Kumar Pal

Tungsten inert gas (TIG) welding on Duplex stainless steel (DSS) is more easy, comfortable and useful, if the process is precisely understood and controlled through development of the science & technology. TIG welding on DSS has been performed with the help of specific controlled welding process parameters. Welding quality has been strongly depended on these process parameters. In this study, some valuable welding parameters are chosen. These are welding current, shielding gas flow rate and speed of welding. These process parameters of TIG welding for ASTM/UNS 2205 DSS welds are optimized by using Principal Component Analysis (PCA) method and Grey based Taguchi’s L9 Orthogonal array (OA) experimental plan with the conception of signal to noise ratio (N/S). After that, compression results of above mentioned two analyses of TIG welding process parameters have been calculated. The quality of the TIG welding on DSS has been evaluated in term of ultimate tensile strength, yield strength and percentage of elongation. Compression results of both analyses indicate application feasibility for continuous improvement of welding quality on DSS in different components of chemical, oil and gas industries.


Author(s):  
Jephthah A. Ikimi ◽  
Aigbovbiosa A. Momodu ◽  
Erhuvwu Totore

In welding, the quality of welded joints is greatly influenced by the welding process parameters. Thus, in order to achieve a good weld quality, there is exigency to select the right welding process parameters. The focus of this study is to investigate the effect of Metal Inert Gas (MIG) welding process parameters; welding current, welding voltage and welding speed on the tensile strength of mild steel AA10119 welded plates. The experiment was designed using Taguchi’s L9 orthogonal array with three levels. Kaierda MIG MAG Inverter CO2 Welder Model E-180 welding machine was used to conduct the experiments with three repetitions. From the analysis carried out by applying Taguchi’s method, the result shows that the welding speed and welding current have the most significant influence on tensile strength of the weld and an optimum parameter setting of A3B2C2 was suggested; welding current 240 A, welding voltage 25 V and welding speed 0.010 m/s. The mean tensile strength at this optimal setting A3B2C2 was predicted to be 442 N/mm2.


Author(s):  
VIKESH VIKESH ◽  
PROF. JAGJIT RANDHAWA ◽  
DR, N. M. SURI

TIG welding is mostly used to weldthin sections for high surface finish. A major drawback in the processis having very small penetration as compare to other arc welding process. The problem can be avoided by using active flux in conventional TIG welding. In the present study investigate theoptimization of A-TIG welding process on mild steel for an optimal parameter by using Taguchi technique. Theeffect of various process parameters (welding current (I), welding speed (V), active flux) .IN the present study efforts were made to increase the weld penetration by appling the active flux and to optimize the process parameters.


Sign in / Sign up

Export Citation Format

Share Document