A Study on Deep Learning Model Autonomous Driving Based on Big Data

2021 ◽  
Vol 9 (4) ◽  
pp. 0-0

Autonomous driving requires a large amount of data to improve performance, and we tried to solve this problem by using CARLA simulation. In order to utilize the actual data, when the sensor installed in the vehicle recognizes the dangerous situation, the embedded device detects and judges the danger 5-10 seconds in advance, and the acquired various dangerous situation data is sent to the iCloud(server) for retraining with new data. Over time, the learning model's performance gets better and more perfect. The deep learning model used for training is a detection model based on a convolution neural network (CNN), and a YOLO model that shows optimal detection performance. We propose a connectivity vehicle technology system solution, which is an important part of autonomous driving, using big data-based deep learning algorithms. In this study, We implement and extensively evaluate the system by auto ware under various settings using a popular end-to-end self-driving software Autoware on NVIDIA Corporation for the development of autonomous vehicles.

2021 ◽  
Vol 12 (1) ◽  
pp. 114-139
Author(s):  
Hassan I. Ahmed ◽  
Abdurrahman A. Nasr ◽  
Salah M. Abdel-Mageid ◽  
Heba K. Aslan

Nowadays, Internet of Things (IoT) is considered as part our lives and it includes different aspects - from wearable devices to smart devices used in military applications. IoT connects a variety of devices and as such, the generated data is considered as ‘Big Data'. There has however been an increase in attacks in this era of IoT since IoT carries crucial information regarding banking, environmental, geographical, medical, and other aspects of the daily lives of humans. In this paper, a Distributed Attack Detection Model (DADEM) that combines two techniques - Deep Learning and Big Data analytics - is proposed. Sequential Deep Learning model is chosen as a classification engine for the distributed processing model after testing its classification accuracy against other classification algorithms like logistic regression, KNN, ID3 decision tree, CART, and SVM. Results showed that Sequential Deep Learning model outperforms the aforementioned ones. The classification accuracy of DADEM approaches 99.64% and 99.98% for the UNSW-NB15 and BoT-IoT datasets, respectively. Moreover, a plan is proposed for optimizing the proposed model to reduce the overhead of the overall system operation in a constrained environment like IoT.


2020 ◽  
Vol 513 ◽  
pp. 386-396 ◽  
Author(s):  
Mohammad Mehedi Hassan ◽  
Abdu Gumaei ◽  
Ahmed Alsanad ◽  
Majed Alrubaian ◽  
Giancarlo Fortino

2020 ◽  
Vol 12 (12) ◽  
pp. 5074
Author(s):  
Jiyoung Woo ◽  
Jaeseok Yun

Spam posts in web forum discussions cause user inconvenience and lower the value of the web forum as an open source of user opinion. In this regard, as the importance of a web post is evaluated in terms of the number of involved authors, noise distorts the analysis results by adding unnecessary data to the opinion analysis. Here, in this work, an automatic detection model for spam posts in web forums using both conventional machine learning and deep learning is proposed. To automatically differentiate between normal posts and spam, evaluators were asked to recognize spam posts in advance. To construct the machine learning-based model, text features from posted content using text mining techniques from the perspective of linguistics were extracted, and supervised learning was performed to distinguish content noise from normal posts. For the deep learning model, raw text including and excluding special characters was utilized. A comparison analysis on deep neural networks using the two different recurrent neural network (RNN) models of the simple RNN and long short-term memory (LSTM) network was also performed. Furthermore, the proposed model was applied to two web forums. The experimental results indicate that the deep learning model affords significant improvements over the accuracy of conventional machine learning associated with text features. The accuracy of the proposed model using LSTM reaches 98.56%, and the precision and recall of the noise class reach 99% and 99.53%, respectively.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Fanyu Bu ◽  
Zhikui Chen ◽  
Peng Li ◽  
Tong Tang ◽  
Ying Zhang

With the development of Internet of Everything such as Internet of Things, Internet of People, and Industrial Internet, big data is being generated. Clustering is a widely used technique for big data analytics and mining. However, most of current algorithms are not effective to cluster heterogeneous data which is prevalent in big data. In this paper, we propose a high-order CFS algorithm (HOCFS) to cluster heterogeneous data by combining the CFS clustering algorithm and the dropout deep learning model, whose functionality rests on three pillars: (i) an adaptive dropout deep learning model to learn features from each type of data, (ii) a feature tensor model to capture the correlations of heterogeneous data, and (iii) a tensor distance-based high-order CFS algorithm to cluster heterogeneous data. Furthermore, we verify our proposed algorithm on different datasets, by comparison with other two clustering schemes, that is, HOPCM and CFS. Results confirm the effectiveness of the proposed algorithm in clustering heterogeneous data.


Sign in / Sign up

Export Citation Format

Share Document