Hybridizing Convolutional Neural Network for Classification of Lung diseases

2022 ◽  
Vol 13 (2) ◽  
pp. 0-0

Pulmonary disease is widespread worldwide. There is persistent blockage of the lungs, pneumonia, asthma, TB, etc. It is essential to diagnose the lungs promptly. For this reason, machine learning models were developed. For lung disease prediction, many deep learning technologies, including the CNN, and the capsule network, are used. The fundamental CNN has low rotating, inclined, or other irregular image orientation efficiency. Therefore by integrating the space transformer network (STN) with CNN, we propose a new hybrid deep learning architecture named STNCNN. The new model is implemented on the dataset from the Kaggle repository for an NIH chest X-ray image. STNCNN has an accuracy of 69% in respect of the entire dataset, while the accuracy values of vanilla grey, vanilla RGB, hybrid CNN are 67.8%, 69.5%, and 63.8%, respectively. When the sample data set is applied, STNCNN takes much less time to train at the cost of a slightly less reliable validation. Therefore both specialists and physicians are simplified by the proposed STNCNN System for the diagnosis of lung disease.

2021 ◽  
Vol 1 ◽  
pp. 1183-1192
Author(s):  
Sebastian Bickel ◽  
Benjamin Schleich ◽  
Sandro Wartzack

AbstractData-driven methods from the field of Artificial Intelligence or Machine Learning are increasingly applied in mechanical engineering. This refers to the development of digital engineering in recent years, which aims to bring these methods into practice in order to realize cost and time savings. However, a necessary step towards the implementation of such methods is the utilization of existing data. This problem is essential because the mere availability of data does not automatically imply data usability. Therefore, this paper presents a method to automatically recognize symbols from principle sketches, which allows the generation of training data for machine learning algorithms. In this approach, the symbols are created randomly and their illustration varies with each generation. . A deep learning network from the field of computer vision is used to test the generated data set and thus to recognize symbols on principle sketches. This type of drawing is especially interesting because the cost-saving potential is very high due to the application in the early phases of the product development process.


2021 ◽  
Vol 1 (1) ◽  
pp. 12-18
Author(s):  
Yew Fai Cheah

Chest X-ray images can be used to detect lung diseases such as COVID-19, viral pneumonia, and tuberculosis (TB). These diseases have similar patterns and diagnoses, making it difficult for clinicians and radiologists to differentiate between them. This paper uses convolutional neural networks (CNNs) to diagnose lung disease using chest X-ray images obtained from online sources. The classification task is separated into three and four classes, with COVID-19, normal, TB, and viral pneumonia, while the three-class problem excludes the normal lung. During testing, AlexNet and ResNet-18 gave promising results, scoring more than 95% accuracy.


Author(s):  
Tarunika kumaraguru ◽  
P. Abirami ◽  
K.M. Darshan ◽  
S.P. Angeline Kirubha ◽  
S. Latha ◽  
...  
Keyword(s):  
X Ray ◽  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rajit Nair ◽  
Santosh Vishwakarma ◽  
Mukesh Soni ◽  
Tejas Patel ◽  
Shubham Joshi

Purpose The latest 2019 coronavirus (COVID-2019), which first appeared in December 2019 in Wuhan's city in China, rapidly spread around the world and became a pandemic. It has had a devastating impact on daily lives, the public's health and the global economy. The positive cases must be identified as soon as possible to avoid further dissemination of this disease and swift care of patients affected. The need for supportive diagnostic instruments increased, as no specific automated toolkits are available. The latest results from radiology imaging techniques indicate that these photos provide valuable details on the virus COVID-19. User advanced artificial intelligence (AI) technologies and radiological imagery can help diagnose this condition accurately and help resolve the lack of specialist doctors in isolated areas. In this research, a new paradigm for automatic detection of COVID-19 with bare chest X-ray images is displayed. Images are presented. The proposed model DarkCovidNet is designed to provide correct binary classification diagnostics (COVID vs no detection) and multi-class (COVID vs no results vs pneumonia) classification. The implemented model computed the average precision for the binary and multi-class classification of 98.46% and 91.352%, respectively, and an average accuracy of 98.97% and 87.868%. The DarkNet model was used in this research as a classifier for a real-time object detection method only once. A total of 17 convolutionary layers and different filters on each layer have been implemented. This platform can be used by the radiologists to verify their initial application screening and can also be used for screening patients through the cloud. Design/methodology/approach This study also uses the CNN-based model named Darknet-19 model, and this model will act as a platform for the real-time object detection system. The architecture of this system is designed in such a way that they can be able to detect real-time objects. This study has developed the DarkCovidNet model based on Darknet architecture with few layers and filters. So before discussing the DarkCovidNet model, look at the concept of Darknet architecture with their functionality. Typically, the DarkNet architecture consists of 5 pool layers though the max pool and 19 convolution layers. Assume as a convolution layer, and as a pooling layer. Findings The work discussed in this paper is used to diagnose the various radiology images and to develop a model that can accurately predict or classify the disease. The data set used in this work is the images bases on COVID-19 and non-COVID-19 taken from the various sources. The deep learning model named DarkCovidNet is applied to the data set, and these have shown signification performance in the case of binary classification and multi-class classification. During the multi-class classification, the model has shown an average accuracy 98.97% for the detection of COVID-19, whereas in a multi-class classification model has achieved an average accuracy of 87.868% during the classification of COVID-19, no detection and Pneumonia. Research limitations/implications One of the significant limitations of this work is that a limited number of chest X-ray images were used. It is observed that patients related to COVID-19 are increasing rapidly. In the future, the model on the larger data set which can be generated from the local hospitals will be implemented, and how the model is performing on the same will be checked. Originality/value Deep learning technology has made significant changes in the field of AI by generating good results, especially in pattern recognition. A conventional CNN structure includes a convolution layer that extracts characteristics from the input using the filters it applies, a pooling layer that reduces calculation efficiency and the neural network's completely connected layer. A CNN model is created by integrating one or more of these layers, and its internal parameters are modified to accomplish a specific mission, such as classification or object recognition. A typical CNN structure has a convolution layer that extracts features from the input with the filters it applies, a pooling layer to reduce the size for computational performance and a fully connected layer, which is a neural network. A CNN model is created by combining one or more such layers, and its internal parameters are adjusted to accomplish a particular task, such as classification or object recognition.


2021 ◽  
Author(s):  
Indrajeet Kumar ◽  
Jyoti Rawat

Abstract The manual diagnostic tests performed in laboratories for pandemic disease such as COVID19 is time-consuming, requires skills and expertise of the performer to yield accurate results. Moreover, it is very cost ineffective as the cost of test kits is high and also requires well-equipped labs to conduct them. Thus, other means of diagnosing the patients with presence of SARS-COV2 (the virus responsible for COVID19) must be explored. A radiography method like chest CT images is one such means that can be utilized for diagnosis of COVID19. The radio-graphical changes observed in CT images of COVID19 patient helps in developing a deep learning-based method for extraction of graphical features which are then used for automated diagnosis of the disease ahead of laboratory-based testing. The proposed work suggests an Artificial Intelligence (AI) based technique for rapid diagnosis of COVID19 from given volumetric CT images of patient’s chest by extracting its visual features and then using these features in the deep learning module. The proposed convolutional neural network is deployed for classifying the infectious and non-infectious SARS-COV2 subjects. The proposed network utilizes 746 chests scanned CT images of which 349 images belong to COVID19 positive cases while remaining 397 belong negative cases of COVID19. The extensive experiment has been completed with the accuracy of 98.4 %, sensitivity of 98.5 %, the specificity of 98.3 %, the precision of 97.1 %, F1score of 97.8 %. The obtained result shows the outstanding performance for classification of infectious and non-infectious for COVID19 cases.


Author(s):  
Mohammad S. Majdi ◽  
Khalil N. Salman ◽  
Michael F. Morris ◽  
Nirav C. Merchant ◽  
Jeffrey J. Rodriguez
Keyword(s):  
X Ray ◽  

Author(s):  
Enzo Tartaglione ◽  
Carlo Alberto Barbano ◽  
Claudio Berzovini ◽  
Marco Calandri ◽  
Marco Grangetto

The possibility to use widespread and simple chest X-ray (CXR) imaging for early screening of COVID-19 patients is attracting much interest from both the clinical and the AI community. In this study we provide insights and also raise warnings on what is reasonable to expect by applying deep learning to COVID classification of CXR images. We provide a methodological guide and critical reading of an extensive set of statistical results that can be obtained using currently available datasets. In particular, we take the challenge posed by current small size COVID data and show how significant can be the bias introduced by transfer-learning using larger public non-COVID CXR datasets. We also contribute by providing results on a medium size COVID CXR dataset, just collected by one of the major emergency hospitals in Northern Italy during the peak of the COVID pandemic. These novel data allow us to contribute to validate the generalization capacity of preliminary results circulating in the scientific community. Our conclusions shed some light into the possibility to effectively discriminate COVID using CXR.


Author(s):  
Roberto Porto ◽  
Jose M. Molina ◽  
Antonio Berlanga ◽  
Miguel A. Patricio

Learning systems have been very focused on creating models that are capable of obtaining the best results in error metrics. Recently, the focus has shifted to improvement in order to interpret and explain their results. The need for interpretation is greater when these models are used to support decision making. In some areas this becomes an indispensable requirement, such as in medicine. This paper focuses on the prediction of cardiovascular disease by analyzing the well-known Statlog (Heart) Data Set from the UCI’s Automated Learning Repository. This study will analyze the cost of making predictions easier to interpret by reducing the number of features that explain the classification of health status versus the cost in accuracy. It will be analyzed on a large set of classification techniques and performance metrics. Demonstrating that it is possible to make explainable and reliable models that have a good commitment to predictive performance.


2020 ◽  
Author(s):  
Huseyin Yaşar ◽  
Murat Ceylan

Abstract At the end of 2019, a new type of virus, belonging to the coronaviridae family has emerged and it is considered that the virus in question is of zootonic origin. The virus that emerged in China first affected this country and then spread worldwide. Pneumonia develops due to Covid-19 virus in patients having severe disease symptoms. Many literature studies have been carried out in the process where the effects of the disease-induced pneumonia in lungs have been demonstrated with the help of chest X-ray imaging. In this study, which aims at early diagnosis of Covid-19 disease by using X-Ray images, the deep-learning approach, which is a state-of-the-art artificial intelligence method, was used and automatic classification of images was performed using Convolutional Neural Networks (CNN). In the first training-test data set used in the study, there were a total of 230 abnormal and 80 normal X-Ray images, while in the second training-test data set there were 476 X-Ray images, of which 150 abnormal and 326 normal. Thus, classification results have been provided for two data sets, containing predominantly abnormal images and predominantly normal images respectively. In the study, a 23-layer CNN architecture was developed. Within the scope of the study, results were obtained by using chest X-Ray images directly in training-test procedures and the sub-band images obtained by applying Dual Tree Complex Wavelet Transform (DT-CWT) to the above-mentioned images. The same experiments were repeated using images obtained by applying Local Binary Pattern (LBP) to the chest X-Ray images. Within the scope of the study, a new result generation algorithm having been put forward additionally, it was ensured that the experimental results were combined and the success of the study was improved. In the experiments carried out in the study, the trainings were carried out using the k-fold cross validation method. Here the k value was chosen 23. Considering the highest results of the tests performed in the study, values of sensitivity, specificity, accuracy and AUC for the first training-test data set were calculated to be 1, 1, 0,9913 and 0,9996; while for the second data set of training-test, they were 1, 0,9969, 0,9958 and 0,9996 respectively. Considering the average highest results of the experiments performed within the scope of the study, the values of sensitivity, specificity, accuracy and AUC for the first training-test data set were 0,9933, 0,9725, 0,9843 and 0,9988; while for the second training-test data set, they were 0,9813, 0,9908, 0,9857 and 0,9983 respectively.


2021 ◽  
Author(s):  
Tomochika Fujisawa ◽  
Victor Noguerales ◽  
Emmanouil Meramveliotakis ◽  
Anna Papadopoulou ◽  
Alfried P Vogler

Complex bulk samples of invertebrates from biodiversity surveys present a great challenge for taxonomic identification, especially if obtained from unexplored ecosystems. High-throughput imaging combined with machine learning for rapid classification could overcome this bottleneck. Developing such procedures requires that taxonomic labels from an existing source data set are used for model training and prediction of an unknown target sample. Yet the feasibility of transfer learning for the classification of unknown samples remains to be tested. Here, we assess the efficiency of deep learning and domain transfer algorithms for family-level classification of below-ground bulk samples of Coleoptera from understudied forests of Cyprus. We trained neural network models with images from local surveys versus global databases of above-ground samples from tropical forests and evaluated how prediction accuracy was affected by: (a) the quality and resolution of images, (b) the size and complexity of the training set and (c) the transferability of identifications across very disparate source-target pairs that do not share any species or genera. Within-dataset classification accuracy reached 98% and depended on the number and quality of training images and on dataset complexity. The accuracy of between-datasets predictions was reduced to a maximum of 82% and depended greatly on the standardisation of the imaging procedure. When the source and target images were of similar quality and resolution, albeit from different faunas, the reduction of accuracy was minimal. Application of algorithms for domain adaptation significantly improved the prediction performance of models trained by non-standardised, low-quality images. Our findings demonstrate that existing databases can be used to train models and successfully classify images from unexplored biota, when the imaging conditions and classification algorithms are carefully considered. Also, our results provide guidelines for data acquisition and algorithmic development for high-throughput image-based biodiversity surveys.


Sign in / Sign up

Export Citation Format

Share Document