scholarly journals A New Deep Learning Pipeline to Detect Covid-19 on Chest X-Ray Images using Local Binary Pattern, Dual Tree Complex Wavelet Transform and Convolutional Neural Networks

2020 ◽  
Author(s):  
Huseyin Yaşar ◽  
Murat Ceylan

Abstract At the end of 2019, a new type of virus, belonging to the coronaviridae family has emerged and it is considered that the virus in question is of zootonic origin. The virus that emerged in China first affected this country and then spread worldwide. Pneumonia develops due to Covid-19 virus in patients having severe disease symptoms. Many literature studies have been carried out in the process where the effects of the disease-induced pneumonia in lungs have been demonstrated with the help of chest X-ray imaging. In this study, which aims at early diagnosis of Covid-19 disease by using X-Ray images, the deep-learning approach, which is a state-of-the-art artificial intelligence method, was used and automatic classification of images was performed using Convolutional Neural Networks (CNN). In the first training-test data set used in the study, there were a total of 230 abnormal and 80 normal X-Ray images, while in the second training-test data set there were 476 X-Ray images, of which 150 abnormal and 326 normal. Thus, classification results have been provided for two data sets, containing predominantly abnormal images and predominantly normal images respectively. In the study, a 23-layer CNN architecture was developed. Within the scope of the study, results were obtained by using chest X-Ray images directly in training-test procedures and the sub-band images obtained by applying Dual Tree Complex Wavelet Transform (DT-CWT) to the above-mentioned images. The same experiments were repeated using images obtained by applying Local Binary Pattern (LBP) to the chest X-Ray images. Within the scope of the study, a new result generation algorithm having been put forward additionally, it was ensured that the experimental results were combined and the success of the study was improved. In the experiments carried out in the study, the trainings were carried out using the k-fold cross validation method. Here the k value was chosen 23. Considering the highest results of the tests performed in the study, values of sensitivity, specificity, accuracy and AUC for the first training-test data set were calculated to be 1, 1, 0,9913 and 0,9996; while for the second data set of training-test, they were 1, 0,9969, 0,9958 and 0,9996 respectively. Considering the average highest results of the experiments performed within the scope of the study, the values of sensitivity, specificity, accuracy and AUC for the first training-test data set were 0,9933, 0,9725, 0,9843 and 0,9988; while for the second training-test data set, they were 0,9813, 0,9908, 0,9857 and 0,9983 respectively.

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Mohd Zulfaezal Che Azemin ◽  
Radhiana Hassan ◽  
Mohd Izzuddin Mohd Tamrin ◽  
Mohd Adli Md Ali

The key component in deep learning research is the availability of training data sets. With a limited number of publicly available COVID-19 chest X-ray images, the generalization and robustness of deep learning models to detect COVID-19 cases developed based on these images are questionable. We aimed to use thousands of readily available chest radiograph images with clinical findings associated with COVID-19 as a training data set, mutually exclusive from the images with confirmed COVID-19 cases, which will be used as the testing data set. We used a deep learning model based on the ResNet-101 convolutional neural network architecture, which was pretrained to recognize objects from a million of images and then retrained to detect abnormality in chest X-ray images. The performance of the model in terms of area under the receiver operating curve, sensitivity, specificity, and accuracy was 0.82, 77.3%, 71.8%, and 71.9%, respectively. The strength of this study lies in the use of labels that have a strong clinical association with COVID-19 cases and the use of mutually exclusive publicly available data for training, validation, and testing.


2020 ◽  
Vol 25 (6) ◽  
pp. 553-565 ◽  
Author(s):  
Boran Sekeroglu ◽  
Ilker Ozsahin

The detection of severe acute respiratory syndrome coronavirus 2 (SARS CoV-2), which is responsible for coronavirus disease 2019 (COVID-19), using chest X-ray images has life-saving importance for both patients and doctors. In addition, in countries that are unable to purchase laboratory kits for testing, this becomes even more vital. In this study, we aimed to present the use of deep learning for the high-accuracy detection of COVID-19 using chest X-ray images. Publicly available X-ray images (1583 healthy, 4292 pneumonia, and 225 confirmed COVID-19) were used in the experiments, which involved the training of deep learning and machine learning classifiers. Thirty-eight experiments were performed using convolutional neural networks, 10 experiments were performed using five machine learning models, and 14 experiments were performed using the state-of-the-art pre-trained networks for transfer learning. Images and statistical data were considered separately in the experiments to evaluate the performances of models, and eightfold cross-validation was used. A mean sensitivity of 93.84%, mean specificity of 99.18%, mean accuracy of 98.50%, and mean receiver operating characteristics–area under the curve scores of 96.51% are achieved. A convolutional neural network without pre-processing and with minimized layers is capable of detecting COVID-19 in a limited number of, and in imbalanced, chest X-ray images.


Author(s):  
Gaurav Sharma

Abstract: After every 100 years, a pandemic comes and takes a great toll on the global civilization. This time its COVID-19 and the aftereffects are terrifying. As the symptoms for the disease are very common and are similar to common cold and viral influenza, the detection from symptoms is quite difficult. Although there are many methods devised but the detection of COVID19 has been a problem since the start, and we are still struggling to identify whether a person has the disease. This study proposes a unique model to identify the positive and negative cases using X-ray images of an individual as lungs are the first and most critical body part which gets affected by the virus which causes a deprecation in oxygen saturation. The proposed model is an ensemble of different CNN architectures which are Dense Net, NasNet-Large, Resnet-50, Inception Net, EfficientNetB0 and EfficientNetB1. The results show that the model reaches an accuracy of 99.6% on the tested dataset. Keywords: Deep learning, Convolutional Neural Networks, COVID-19, Ensemble Learning, EfficientNet


2021 ◽  
Vol 42 (1) ◽  
pp. e90289
Author(s):  
Carlos Eduardo Belman López

Given that it is fundamental to detect positive COVID-19 cases and treat affected patients quickly to mitigate the impact of the virus, X-ray images have been subjected to research regarding COVID-19, together with deep learning models, eliminating disadvantages such as the scarcity of RT-PCR test kits, their elevated costs, and the long wait for results. The contribution of this paper is to present new models for detecting COVID-19 and other cases of pneumonia using chest X-ray images and convolutional neural networks, thus providing accurate diagnostics in binary and 4-classes classification scenarios. Classification accuracy was improved, and overfitting was prevented by following 2 actions: (1) increasing the data set size while the classification scenarios were balanced; and (2) adding regularization techniques and performing hyperparameter optimization. Additionally, the network capacity and size in the models were reduced as much as possible, making the final models a perfect option to be deployed locally on devices with limited capacities and without the need for Internet access. The impact of key hyperparameters was tested using modern deep learning packages. The final models obtained a classification accuracy of 99,17 and 94,03% for the binary and categorical scenarios, respectively, achieving superior performance compared to other studies in the literature, and requiring a significantly lower number of parameters. The models can also be placed on a digital platform to provide instantaneous diagnostics and surpass the shortage of experts and radiologists.


2020 ◽  
Vol 12 (3) ◽  
pp. 132-141
Author(s):  
Nator Junior Carvalho da Costa ◽  
Jose Vigno Moura Sousa ◽  
Domingos Bruno Sousa Santos ◽  
Francisco das Chagas Fontenele Marques Junior ◽  
Rodrigo Teixeira de Melo

This paper describes a comparison between three pre-trained neural networks for the classification of chest X-ray images: Xception, Inception V3, and NasNetLarge. Networks were implemented using learning transfer; The database used was the chest x-ray data set, which contains a total of 5856 chest x-ray images of pediatric patients aged one to five years, with three classes: Normal Viral Pneumonia and Bacterial Pneumonia. Data were divided into three groups: validation, testing and training. A comparison was made with the work of kermany who implemented the Inception V3 network in two ways: (Pneumonia X Normal) and (Bacterial Pneumonia X Viral Pneumonia). The nets used had good accuracy, being the NasNetLarge network the best precision, which was 95.35 \% (Pneumonia X Normal) and 91.79 \% (Viral Pneumonia X Bacterial Pneumonia) against 92.80 \% in (Pneumonia X Normal) and 90.70 \% (Viral Pneumonia X Bacterial Pneumonia) from kermany's work, the Xception network also achieved an improvement in accuracy compared to kermany's work, with 93.59 \% at (Normal X Pneumonia) and 91.03 \% in (Viral Pneumonia X Bacterial Pneumonia).


Author(s):  
Rishabh Raj

ommand, product recommendation and medical diagnosis. The detection of severe acute respiratory syndrome corona virus 2 (SARS CoV-2), which is responsible for corona virus disease 2019 (COVID-19), using chest X-ray images has life-saving importance for bothpatients and doctors. In addition, in countries that are unable to purchase laboratory kits for testing, this becomes even more vital. In this study, we aimed to present the use of deep learning for the high-accuracy detection of COVID-19 using chest X-ray images. Publicly available X-ray images were used in the experiments, which involved the training of deep learning and machine learning classifiers. Experiments were performed using convolutional neural networks and machine learning models. Images and statistical data were considered separately in the experiments to evaluate the performances of models, and eightfold cross-validation was used. A mean accuracy of 98.50%. A convolutional neural network without pre-processing and with minimized layers is capable of detecting COVID- 19 in a limited number of, and in imbalanced, chest X-rayimages.


2020 ◽  
Author(s):  
Mundher Taresh ◽  
Ningbo Zhu ◽  
Talal Ahmed Ali Ali

AbstractNovel coronavirus pneumonia (COVID-19) is a contagious disease that has already caused thousands of deaths and infected millions of people worldwide. Thus, all technological gadgets that allow the fast detection of COVID-19 infection with high accuracy can offer help to healthcare professionals. This study is purposed to explore the effectiveness of artificial intelligence (AI) in the rapid and reliable detection of COVID-19 based on chest X-ray imaging. In this study, reliable pre-trained deep learning algorithms were applied to achieve the automatic detection of COVID-19-induced pneumonia from digital chest X-ray images.Moreover, the study aims to evaluate the performance of advanced neural architectures proposed for the classification of medical images over recent years. The data set used in the experiments involves 274 COVID-19 cases, 380 viral pneumonia, and 380 healthy cases, which was collected from the available X-ray images on public medical repositories. The confusion matrix provided a basis for testing the post-classification model. Furthermore, an open-source library PyCM* was used to support the statistical parameters. The study revealed the superiority of Model VGG16 over other models applied to conduct this research where the model performed best in terms of overall scores and based-class scores. According to the research results, deep learning with X-ray imaging is useful in the collection of critical biological markers associated with COVID-19 infection. The technique is conducive for the physicians to make a diagnosis of COVID-19 infection. Meanwhile, the high accuracy of this computer-aided diagnostic tool can significantly improve the speed and accuracy of COVID-19 diagnosis.


Author(s):  
Debaraj Rana ◽  
Swarna Prabha Jena ◽  
Subrat Kumar Pradhan

The Global pandemic declared Corona Virus Disease (COVID 19) has affected severely tothe health of human being over the globe. More than 15 crore around worldwide have been affected by the Novel Corona virus and it is progressing rapidly. Mainly in the health sector, the hospitals are not properly equipped with proper diagnosis system which can detect the disease accurately with less time consumption. The Chest X Ray image are taking less time and cost effective which can be used for detection of COVID 19 even the severity can also be determine form the CXR images. In the current research many researchers are focusing on implementation of Deep learning method for accurate and quick detection of COVID 19 which can help the radiologist for evaluation of the disease. In this review, proposed Deep learning methodology from the literature have been discussed with their experimental data set. This review could help to develop modified architecture which gives more improvement in the diagnosis in term of computational complexity and time consumption


Sign in / Sign up

Export Citation Format

Share Document