The Aquaponic Ecosystem Using IoT and IA Solutions

For solving the negative impact of the human evolution in earth, water, pollution and quality of feed. A system of aquaponic is proposed to manage gardening and recover up to 90% of water used for plants. Aquaponic is a system that combines two names: aquaculture which is the farming of fish and hydroponic which is the cultivation of plants (off-soil). On the other hand, the possibility of using the phytotron system. The objective of this solution is to collect performance measures, to control the watering conditions of plants (water level, temperature, humidity, ...) With a cloud support and other possibilities offered by the internet of things (IoT). The paper at hand aim to provide a smart solution integrates the phytotron solution in order to control the first part wish is the hydroponic and the second part concerning the aquaculture in order to offer a smart environment for the cycle of fish’s life.

Author(s):  
Ibtissame Ezzahoui ◽  
Rachida Ait Abdelhouahid ◽  
Khaoula Taji ◽  
Abdelaziz Marzak ◽  
Fadoua Ghanimi

For solving the negative impact of the human evolution in earth, water, pollution and quality of feed. A system of aquaponic is proposed to manage gardening and recover up to 90% of water used for plants. Aquaponic is a system that combines two names: aquaculture which is the farming of fish and hydroponic which is the cultivation of plants (off-soil). On the other hand, the possibility of using the phytotron system. The objective of this solution is to collect performance measures, to control the watering conditions of plants (water level, temperature, humidity, ...) With a cloud support and other possibilities offered by the internet of things (IoT). The paper at hand aim to provide a smart solution integrates the phytotron solution in order to control the first part wish is the hydroponic and the second part concerning the aquaculture in order to offer a smart environment for the cycle of fish’s life.


Author(s):  
Saad Hikmat Haji ◽  
Amira B. Sallow

Air pollution, water pollution, and radiation pollution are significant environmental factors that need to be addressed. Proper monitoring is crucial with the goal that by preserving a healthy society, the planet can achieve sustainable development. With advancements in the internet of things (IoT) and the improvement of modern sensors, environmental monitoring has evolved into a smart environment monitoring (SEM) system in recent years. This article aims to have a critical overview of significant contributions and SEM research, which include monitoring the quality of air , water pollution, radiation pollution, and agricultural systems. The review is divided based on the objectives of applying SEM methods, analyzing each objective about the sensors used, machine learning, and classification methods. Moreover, the authors have thoroughly examined how advancements in sensor technology, the Internet of Things, and machine learning methods have made environmental monitoring into a truly smart monitoring system.


Sensors ◽  
2017 ◽  
Vol 17 (12) ◽  
pp. 2853 ◽  
Author(s):  
Berto Gomes ◽  
Luiz Muniz ◽  
Francisco da Silva e Silva ◽  
Davi dos Santos ◽  
Rafael Lopes ◽  
...  

2021 ◽  
Vol 34 (02) ◽  
pp. 1032-1038
Author(s):  
Arya Majidi

Population growth and urbanization have led to an increase in the rate of waste production, the lack of timely and proper management of which will have adverse effects on human life and the environment. Since most of the waste management costs are spent on waste collection and transportation, it is necessary to find solutions to control the huge costs of this sector. On the other hand, today, intelligent technologies are used globally as solutions to meet challenges in various fields such as agriculture to improve agro-industrial production, transportation, and waste management, which creates a concept called smart cities. One of the categories that has changed the concept of cities and made them have easier and smarter answers to various events and needs is the "Internet of Things", in which many cases and infrastructures with new hardware technologies and Software are integrated. Waste collection is no exception to this rule and efforts have been made to make it smarter. In this research, some of the latest innovations presented globally in order to make trash smarter have been examined.


2021 ◽  
Vol 10 (2) ◽  
pp. 88-106
Author(s):  
Gillian Harrison ◽  
Simon P. Shepherd ◽  
Haibo Chen

Connected and automated vehicle (CAV) technologies and services are rapidly developing and have the potential to revolutionise the transport systems. However, like many innovations, the uptake pathways are uncertain. The focus of this article is on improving understanding of factors that may affect the uptake of highly and fully automated vehicles, with a particular interest in the role of the internet of things (IoT). Using system dynamic modelling, sensitivity testing towards vehicle attributes (e.g., comfort, safety, familiarity) is carried out and scenarios were developed to explore how CAV uptake can vary under different conditions based around the quality of IoT provision. Utility and poor IoT are found to have the biggest influence. Attention is then given to CAV ‘services' that are characterized by the attributes explored earlier in the paper, and it is found that they could contribute to a 20% increase in market share.


Author(s):  
R. I. Minu ◽  
G. Nagarajan

In the present-day scenario, computing is migrating from the on-premises server to the cloud server and now, progressively from the cloud to Edge server where the data is gathered from the origin point. So, the clear objective is to support the execution and unwavering quality of applications and benefits, and decrease the cost of running them, by shortening the separation information needs to travel, subsequently alleviating transmission capacity and inactivity issues. This chapter provides an insight of how the internet of things (IoT) connects with edge computing.


Author(s):  
Mahmoud Elkhodr ◽  
Seyed Shahrestani ◽  
Hon Cheung

The Internet of Things (IoT) brings connectivity to about every objects found in the physical space. It extends connectivity not only to computer and mobile devices but also to everyday objects. From connected fridges, cars and cities, the IoT creates opportunities in numerous domains. This chapter briefly surveys some IoT applications and the impact the IoT could have on societies. It shows how the various application of the IoT enhances the overall quality of life and reduces management and costs in various sectors.


Author(s):  
Neetu Faujdar

Pervasive computing has been greatly supported by the internet of things. The use of internet of things has created the environment that helps in the management of the different modules that are the part of the complete system, which can work effectively without the interference with the other components of the system. The cloud environment with the internet of things can help in getting the greater extend of data sharing. Little attention has been provided to the security of the various stakeholders that are the part of the system. IoT cloud integration involved privacy, security, and personal safety risk of the stakeholders. Not only are these types of security attacks possible, but there is also the possibility of attack on the IoT components like hardware manipulation to disrupt the services. As we are on the network, all the communication attacks of network are also possible. This chapter will cover common aspects of regarding the cloud and internet of things (IOT) with 5G networks.


Sign in / Sign up

Export Citation Format

Share Document