Appropriate Evolutionary Algorithm for Scheduling in FMS

2011 ◽  
Vol 2 (3) ◽  
pp. 15-26 ◽  
Author(s):  
B. B. Choudhury ◽  
B. B. Biswal ◽  
D. Mishra ◽  
R. N. Mahapatra

The diffusion of flexible manufacturing systems (FMS) has not only invigorated production systems, but has also given considerable impetus to relevant analytical fields like scheduling theory and adaptive controls. Depending on the demand of the job there can be variation in batch size. The change in the jobs depends upon the renewal rate. But this does not involve much change in the FMS setup. This paper obtains an optimal schedule of operations to minimize the total processing time in a modular FMS. The FMS setup considered here consists of four numbers of machines to accomplish the desired machining operations. The scheduling deals with optimizing the cost function in terms of machining time. The powers Evolutionary Algorithms, like genetic algorithm (GA) and simulated annealing (SA), can be beneficially utilized for optimization of scheduling FMS. The present work utilizes these powerful approaches and finds out their appropriateness for planning and scheduling of FMS producing variety of parts in batch mode.

Author(s):  
B. B. Choudhury ◽  
B. B. Biswal ◽  
D. Mishra ◽  
R. N. Mahapatra

The diffusion of flexible manufacturing systems (FMS) has not only invigorated production systems, but has also given considerable impetus to relevant analytical fields like scheduling theory and adaptive controls. Depending on the demand of the job there can be variation in batch size. The change in the jobs depends upon the renewal rate. But this does not involve much change in the FMS setup. This paper obtains an optimal schedule of operations to minimize the total processing time in a modular FMS. The FMS setup considered here consists of four numbers of machines to accomplish the desired machining operations. The scheduling deals with optimizing the cost function in terms of machining time. The powers Evolutionary Algorithms, like genetic algorithm (GA) and simulated annealing (SA), can be beneficially utilized for optimization of scheduling FMS. The present work utilizes these powerful approaches and finds out their appropriateness for planning and scheduling of FMS producing variety of parts in batch mode.


2015 ◽  
Vol 816 ◽  
pp. 536-546
Author(s):  
Vladimír Rudy ◽  
Andrea Lešková

This article deals about the challenges of structural changes in manufacturing conditions. The objective of this paper is to present the modular workstations concept based on miniaturization and re-configurability trends. The article is aimed at problems of designing of production systems with a modular construction structure. The modular structure allows an individual and flexible adaptation to varying requirements but also the realization of low-cost solutions for creation of new or modernized production base. The goal is to present the example of modular workstations solutions that correspond with new designing approach. The specification of basics principles, which should help to designing flexible manufacturing systems, discussed in this paper are: modularity; integrability; convertibility; diagnosability; customization. The theoretical part provides an overview of fundamental design principles in manufacturing structures. In the first part of this article are discussed the specification of basic flexibility types in production system and the main impacts influencing design of manufacturing structures. The closing section of the article provides the specification of example solution of adjustable production platform with modular frame (called desktop factory).


2020 ◽  
Author(s):  
José Z. Neto ◽  
Joel Ravelli Jr ◽  
Eduardo P. Godoy

The Industry 4.0 (I4.0) together with the Industrial Internet of Things (IIoT) enable business productivity to be improved through rapid changes in production scope in an increasingly volatile market. This technology innovation is perceived by integrating manufacturing systems, managing business rules, and decentralizing computing resources, enabling rapid changes in production systems. The Reference Architecture Model for Industry 4.0 (RAMI 4.0) is a three-dimensional layer model to support I4.0 applications. One of the major challenges for adopting RAMI 4.0 is the development of solutions that support the functionality of each layer and the necessary interactions between the elements of each layer. This paper focuses on the proposal of architecture for flexible manufacturing in I4.0 using all the Information Technology (IT) Layers of the RAMI 4.0. In order to enable a standardized and interoperable communication, the architecture used the OPC-UA protocol to connect the low layers elements in the factory perspective and REST APIs to connect the high layers in the business perspective. The integration architecture creates an online interface to provide the client the ability to enter, view, and even modify an order based on their needs and priorities, enabling the industry to implement rapid changes to adapt to the marketplace.


2013 ◽  
Vol 378 ◽  
pp. 367-374 ◽  
Author(s):  
Andrey A. Kutin ◽  
Mikhail Turkin

This paper introduces an analytical method for evaluating the performance of closed loop manufacturing systems with unreliable machines and finite buffers. The method involves transforming an arbitrary loop into one without thresholds and then evaluating the transformed loop using a new set of decomposition equations. It is more accurate than existing methods and is effective for a wider range of cases. The convergence reliability, and speed of the method are also discussed. In addition, observations are made on the behavior of closed loop production systems under various conditions. Finally, the method is used in a case study to design a flexible manufacturing system for production of aerospace parts.


Processes ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 595 ◽  
Author(s):  
Muhammad Bashir ◽  
Liang Hong

Decentralized supervisory structure has drawn much attention in recent years to address the computational complexity in designing supervisory structures for large Petri net model. Many studies are reported in the paradigm of automata while few can be found in the Petri net paradigm. The decentralized supervisory structure can address the computational complexity, but it adds the structural complexity of supervisory structure. This paper proposed a new method of designing a global controller for decentralized systems of a large Petri net model for flexible manufacturing systems. The proposed method can both reduce the computational complexity by decomposition of large Petri net models into several subnets and structural complexity by designing a global supervisory structure that can greatly reduce the cost at the implementation stage. Two efficient algorithms are developed in the proposed method. Algorithm 1 is used to compute decentralized working zones from the given Petri net model for flexible manufacturing systems. Algorithm 2 is used to compute the global controller that enforces the liveness to the decentralized working zones. The ring assembling method is used to reconnect and controlled the working zones via a global controller. The proposed method can be applied to large Petri nets size and, in general, it has less computational and structural complexity. Experimental examples are presented to explore the applicability of the proposed method.


Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 69 ◽  
Author(s):  
Jon Martin ◽  
Oskar Casquero ◽  
Brais Fortes ◽  
Marga Marcos

The design and operation of manufacturing systems is evolving to adapt to different challenges. One of the most important is the reconfiguration of the manufacturing process in response to context changes (e.g., faulty equipment or urgent orders, among others). In this sense, the Autonomous Transport Vehicle (ATV) plays a key role in building more flexible and decentralized manufacturing systems. Nowadays, robotic frameworks (RFs) are used for developing robotic systems such as ATVs, but they focus on the control of the robotic system itself. However, social abilities are required for performing intelligent interaction (peer-to-peer negotiation and decision-making) among the different and heterogeneous Cyber Physical Production Systems (such as machines, transport systems and other equipment present in the factory) to achieve manufacturing reconfiguration. This work contributes a generic multi-layer architecture that integrates a RF with a Multi-Agent System (MAS) to provide social abilities to ATVs. This architecture has been implemented on ROS and JADE, the most widespread RF and MAS framework, respectively. We believe this to be the first work that addresses the intelligent interaction of transportation systems for flexible manufacturing environments in a holistic form.


Sign in / Sign up

Export Citation Format

Share Document