Four Degrees of Freedom Robot Arm, Low-Cost Competition in the Design and Development

Author(s):  
Liu Hongcong

The focus of this work is to design, develop and implement enhanced control and competitive robot arm thick and short cost. Design of four degree of freedom and talent of robot arm is to complete the accurate and simple tasks, such as optical materials processing, will be integrated into the mobile platform, as an assistant for the industrial labor force. Between the robot arm equipped with weapons and arm movements associated with the plurality of servo motor. Servo motor, encoder, so as to realize no controller includes. To control the robot, using Lab view, to the computation of the inverse kinematics of serial communication and proper angle, a micro controller, servo motor and drive ability of modify the location, velocity and acceleration. The robot arm was tested and verified, results show that, its normal work.

2019 ◽  
pp. 1030-1046
Author(s):  
Liu Hongcong

The focus of this work is to design, develop and implement enhanced control and competitive robot arm thick and short cost. Design of four degree of freedom and talent of robot arm is to complete the accurate and simple tasks, such as optical materials processing, will be integrated into the mobile platform, as an assistant for the industrial labor force. Between the robot arm equipped with weapons and arm movements associated with the plurality of servo motor. Servo motor, encoder, so as to realize no controller includes. To control the robot, using Lab view, to the computation of the inverse kinematics of serial communication and proper angle, a micro controller, servo motor and drive ability of modify the location, velocity and acceleration. The robot arm was tested and verified, results show that, its normal work.


Author(s):  
Muhammad Bilal Khan

We present the design and overall development of an eight degrees of freedom (DOF) based Bioinspired Quadruped Robot (BiQR). The robot is designed with a skeleton made of cedar wood. The wooden skeleton is based on exploring the potential of cedar wood to be a choice for legged robots’ design. With a total weight of 1.19 kg, the robot uses eight servo motors that run the position control. Relying on the inverse kinematics, the control design enables the robot to perform the walk gait-based locomotion in a controlled environment. The robot has two main aspects: 1) the initial wooden skeleton development of the robot showing it to be an acceptable choice for robot design, 2) the robot’s applicability as a low-cost legged platform to test the locomotion in a laboratory or a classroom setting.


2019 ◽  
Vol 27 (1) ◽  
pp. 55-62
Author(s):  
Piotr Cheluszka

AbstractThe article presents the possibilities of using easily accessible and inexpensive educational sets in scientific research and the process of robotics education. Such kits allow the exploration of theoretical and practical knowledge taking into account aspects of engineering, such as: mechanics, drive systems, sensor systems, control and programming of robots. Models of robots built from inexpensive components can also be used to test new solutions in the field of construction or control algorithms before they are used in real applications. As an example, the model of the palletizing manipulator for self-assembly was shown, the control of which was based on the Arduino Uno controller, while the drives were implemented using low-cost hobby-grade servos. For the kinematic structure of this manipulator, the forward and inverse kinematics task for the position has been discussed. This constituted the basis for the development of a manual control algorithm implemented in the controller – using a joystick and programmed – based on the data sent to the controller using serial communication from a PC. The article presents the results of the computer simulation of the manipulator kinematics, the hardware and software implementation of the robot model and the effects of its operation. The possibility of expanding the control system with additional elements to increase its functionality was indicated.


2016 ◽  
Vol 19 (3) ◽  
pp. 24-33
Author(s):  
Hung Minh Vu ◽  
Trung Quang Trinh ◽  
Thang Quoc Vo

This paper proposes a new kinematic structure of a redundant serial robot arm and presents forward and inverse kinematic analysis. This is a new structure developed based on the robot IRB 2400 of ABB. The new structure consists of six revolute joints and two prismatic joints. The proposed robot arm has only seven degrees of freedom because the structure has a constraint between two revolute joints. Two prismatic joints help to expand workspaces of manipulator from small to very large. The paper describes in details about forward and inverse kinematics. Forward kinematics is derived based on DH Convention while inverse kinematics is calculated based on an objective function to minimize motions of a revolute joint and two prismatic joints. The simulation results on Matlab software indicated that the joint positions and velocities of a redundant serial robot arm matched well the trajectories in Cartesian Space.


Author(s):  
Muhammad Bilal Khan ◽  
Ahmad Kamal Khan

We present the design and overall development of an eight degrees of freedom (DOF) based Bioinspired Quadruped Robot (BiQR). The robot is designed with a skeleton made of cedar wood. The wooden skeleton is based on exploring the potential of cedar wood to be a choice for legged robots’ design. With a total weight of 1.19 kg, the robot uses eight servo motors that run the position control. Relying on the inverse kinematics, the control design enables the robot to perform the walk gait-based locomotion in a controlled environment. The robot has two main aspects: 1) the initial wooden skeleton development of the robot showing it to be an acceptable choice for robot design, 2) the robot’s applicability as a low-cost legged platform to test the locomotion in a laboratory or a classroom setting.


2010 ◽  
Vol 2010 ◽  
pp. 1-15
Author(s):  
Suguru Arimoto ◽  
Masahiro Sekimoto ◽  
Kenji Tahara

A robot designed to mimic a human becomes kinematically redundant and its total degrees of freedom becomes larger than the number of physical variables required for describing a given task. Kinematic redundancy may contribute to enhancement of dexterity and versatility but it incurs a problem of ill-posedness of inverse kinematics from the task space to the joint space. This ill-posedness was originally found by Bernstein, who tried to unveil the secret of the central nervous system and how nicely it coordinates a skeletomotor system with many DOFs interacting in complex ways. In the history of robotics research, such ill-posedness has not yet been resolved directly but circumvented by introducing an artificial performance index and determining uniquely an inverse kinematics solution by minimization. This paper tackles such Bernstein's problem and proposes a new method for resolving the ill-posedness in a natural way without invoking any artificial index. First, given a curve on a horizontal plane for a redundant robot arm whose endpoint is imposed to trace the curve, the existence of a unique ideal joint trajectory is proved. Second, such a uniquely determined motion can be acquired eventually as a joint control signal through iterative learning without reinforcement or reward.


2011 ◽  
Vol 01 (02) ◽  
pp. 47-55 ◽  
Author(s):  
Ashraf Elfasakhany ◽  
Eduardo Yanez ◽  
Karen Baylon ◽  
Ricardo Salgado

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2459
Author(s):  
Rubén Tena Sánchez ◽  
Fernando Rodríguez Varela ◽  
Lars J. Foged ◽  
Manuel Sierra Castañer

Phase reconstruction is in general a non-trivial problem when it comes to devices where the reference is not accessible. A non-convex iterative optimization algorithm is proposed in this paper in order to reconstruct the phase in reference-less spherical multiprobe measurement systems based on a rotating arch of probes. The algorithm is based on the reconstruction of the phases of self-transmitting devices in multiprobe systems by taking advantage of the on-axis top probe of the arch. One of the limitations of the top probe solution is that when rotating the measurement system arch, the relative phase between probes is lost. This paper proposes a solution to this problem by developing an optimization iterative algorithm that uses partial knowledge of relative phase between probes. The iterative algorithm is based on linear combinations of signals when the relative phase is known. Phase substitution and modal filtering are implemented in order to avoid local minima and make the algorithm converge. Several noise-free examples are presented and the results of the iterative algorithm analyzed. The number of linear combinations used is far below the square of the degrees of freedom of the non-linear problem, which is compensated by a proper initial guess. With respect to noisy measurements, the top probe method will introduce uncertainties for different azimuth and elevation positions of the arch. This is modelled by considering the real noise model of a low-cost receiver and the results demonstrate the good accuracy of the method. Numerical results on antenna measurements are also presented. Due to the numerical complexity of the algorithm, it is limited to electrically small- or medium-size problems.


Robotica ◽  
2021 ◽  
pp. 1-12
Author(s):  
Paolo Di Lillo ◽  
Gianluca Antonelli ◽  
Ciro Natale

SUMMARY Control algorithms of many Degrees-of-Freedom (DOFs) systems based on Inverse Kinematics (IK) or Inverse Dynamics (ID) approaches are two well-known topics of research in robotics. The large number of DOFs allows the design of many concurrent tasks arranged in priorities, that can be solved either at kinematic or dynamic level. This paper investigates the effects of modeling errors in operational space control algorithms with respect to uncertainties affecting knowledge of the dynamic parameters. The effects on the null-space projections and the sources of steady-state errors are investigated. Numerical simulations with on-purpose injected errors are used to validate the thoughts.


Author(s):  
Xiaoli Zhang ◽  
Carl A. Nelson

The size and limited dexterity of current surgical robotic systems are factors which limit their usefulness. To improve the level of assimilation of surgical robots in minimally invasive surgery (MIS), a compact, lightweight surgical robotic positioning mechanism with four degrees of freedom (DOF) (three rotational DOF and one translation DOF) is proposed in this paper. This spatial mechanism based on a bevel-gear wrist is remotely driven with three rotation axes intersecting at a remote rotation center (the MIS entry port). Forward and inverse kinematics are derived, and these are used for optimizing the mechanism structure given workspace requirements. By evaluating different spherical geared configurations with various link angles and pitch angles, an optimal design is achieved which performs surgical tool positioning throughout the desired kinematic workspace while occupying a small space bounded by a hemisphere of radius 13.7 cm. This optimized workspace conservatively accounts for collision avoidance between patient and robot or internally between the robot links. This resultant mechanism is highly compact and yet has the dexterity to cover the extended workspace typically required in telesurgery. It can also be used for tool tracking and skills assessment. Due to the linear nature of the gearing relationships, it may also be well suited for implementing force feedback for telesurgery.


Sign in / Sign up

Export Citation Format

Share Document