Privacy Preserving Data Mining as Proof of Useful Work

2021 ◽  
Vol 32 (1) ◽  
pp. 69-85
Author(s):  
Hjalmar K. Turesson ◽  
Henry Kim ◽  
Marek Laskowski ◽  
Alexandra Roatis

Blockchains rely on a consensus among participants to achieve decentralization and security. However, reaching consensus in an online, digital world where identities are not tied to physical users is a challenging problem. Proof-of-work provides a solution by linking representation to a valuable, physical resource. While this has worked well, it uses a tremendous amount of specialized hardware and energy, with no utility beyond blockchain security. Here, the authors propose an alternative consensus scheme that directs the computational resources to the optimization of machine learning (ML) models – a task with more general utility. This is achieved by a hybrid consensus scheme relying on three parties: data providers, miners, and a committee. The data provider makes data available and provides payment in return for the best model, miners compete about the payment and access to the committee by producing ML optimized models, and the committee controls the ML competition.

2020 ◽  
Author(s):  
Mohammed J. Zaki ◽  
Wagner Meira, Jr
Keyword(s):  

2019 ◽  
Vol 12 (3) ◽  
pp. 171-179 ◽  
Author(s):  
Sachin Gupta ◽  
Anurag Saxena

Background: The increased variability in production or procurement with respect to less increase of variability in demand or sales is considered as bullwhip effect. Bullwhip effect is considered as an encumbrance in optimization of supply chain as it causes inadequacy in the supply chain. Various operations and supply chain management consultants, managers and researchers are doing a rigorous study to find the causes behind the dynamic nature of the supply chain management and have listed shorter product life cycle, change in technology, change in consumer preference and era of globalization, to name a few. Most of the literature that explored bullwhip effect is found to be based on simulations and mathematical models. Exploring bullwhip effect using machine learning is the novel approach of the present study. Methods: Present study explores the operational and financial variables affecting the bullwhip effect on the basis of secondary data. Data mining and machine learning techniques are used to explore the variables affecting bullwhip effect in Indian sectors. Rapid Miner tool has been used for data mining and 10-fold cross validation has been performed. Weka Alternating Decision Tree (w-ADT) has been built for decision makers to mitigate bullwhip effect after the classification. Results: Out of the 19 selected variables affecting bullwhip effect 7 variables have been selected which have highest accuracy level with minimum deviation. Conclusion: Classification technique using machine learning provides an effective tool and techniques to explore bullwhip effect in supply chain management.


2020 ◽  
Author(s):  
Dianbo Liu

BACKGROUND Applications of machine learning (ML) on health care can have a great impact on people’s lives. At the same time, medical data is usually big, requiring a significant amount of computational resources. Although it might not be a problem for wide-adoption of ML tools in developed nations, availability of computational resource can very well be limited in third-world nations and on mobile devices. This can prevent many people from benefiting of the advancement in ML applications for healthcare. OBJECTIVE In this paper we explored three methods to increase computational efficiency of either recurrent neural net-work(RNN) or feedforward (deep) neural network (DNN) while not compromising its accuracy. We used in-patient mortality prediction as our case analysis upon intensive care dataset. METHODS We reduced the size of RNN and DNN by applying pruning of “unused” neurons. Additionally, we modified the RNN structure by adding a hidden-layer to the RNN cell but reduce the total number of recurrent layers to accomplish a reduction of total parameters in the network. Finally, we implemented quantization on DNN—forcing the weights to be 8-bits instead of 32-bits. RESULTS We found that all methods increased implementation efficiency–including training speed, memory size and inference speed–without reducing the accuracy of mortality prediction. CONCLUSIONS This improvements allow the implementation of sophisticated NN algorithms on devices with lower computational resources.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4805
Author(s):  
Saad Abbasi ◽  
Mahmoud Famouri ◽  
Mohammad Javad Shafiee ◽  
Alexander Wong

Human operators often diagnose industrial machinery via anomalous sounds. Given the new advances in the field of machine learning, automated acoustic anomaly detection can lead to reliable maintenance of machinery. However, deep learning-driven anomaly detection methods often require an extensive amount of computational resources prohibiting their deployment in factories. Here we explore a machine-driven design exploration strategy to create OutlierNets, a family of highly compact deep convolutional autoencoder network architectures featuring as few as 686 parameters, model sizes as small as 2.7 KB, and as low as 2.8 million FLOPs, with a detection accuracy matching or exceeding published architectures with as many as 4 million parameters. The architectures are deployed on an Intel Core i5 as well as a ARM Cortex A72 to assess performance on hardware that is likely to be used in industry. Experimental results on the model’s latency show that the OutlierNet architectures can achieve as much as 30x lower latency than published networks.


2021 ◽  
Vol 1088 (1) ◽  
pp. 012035
Author(s):  
Mulyawan ◽  
Agus Bahtiar ◽  
Githera Dwilestari ◽  
Fadhil Muhammad Basysyar ◽  
Nana Suarna

2021 ◽  
pp. 097215092098485
Author(s):  
Sonika Gupta ◽  
Sushil Kumar Mehta

Data mining techniques have proven quite effective not only in detecting financial statement frauds but also in discovering other financial crimes, such as credit card frauds, loan and security frauds, corporate frauds, bank and insurance frauds, etc. Classification of data mining techniques, in recent years, has been accepted as one of the most credible methodologies for the detection of symptoms of financial statement frauds through scanning the published financial statements of companies. The retrieved literature that has used data mining classification techniques can be broadly categorized on the basis of the type of technique applied, as statistical techniques and machine learning techniques. The biggest challenge in executing the classification process using data mining techniques lies in collecting the data sample of fraudulent companies and mapping the sample of fraudulent companies against non-fraudulent companies. In this article, a systematic literature review (SLR) of studies from the area of financial statement fraud detection has been conducted. The review has considered research articles published between 1995 and 2020. Further, a meta-analysis has been performed to establish the effect of data sample mapping of fraudulent companies against non-fraudulent companies on the classification methods through comparing the overall classification accuracy reported in the literature. The retrieved literature indicates that a fraudulent sample can either be equally paired with non-fraudulent sample (1:1 data mapping) or be unequally mapped using 1:many ratio to increase the sample size proportionally. Based on the meta-analysis of the research articles, it can be concluded that machine learning approaches, in comparison to statistical approaches, can achieve better classification accuracy, particularly when the availability of sample data is low. High classification accuracy can be obtained with even a 1:1 mapping data set using machine learning classification approaches.


2021 ◽  
Vol 11 (5) ◽  
pp. 2177
Author(s):  
Zuo Xiang ◽  
Patrick Seeling ◽  
Frank H. P. Fitzek

With increasing numbers of computer vision and object detection application scenarios, those requiring ultra-low service latency times have become increasingly prominent; e.g., those for autonomous and connected vehicles or smart city applications. The incorporation of machine learning through the applications of trained models in these scenarios can pose a computational challenge. The softwarization of networks provides opportunities to incorporate computing into the network, increasing flexibility by distributing workloads through offloading from client and edge nodes over in-network nodes to servers. In this article, we present an example for splitting the inference component of the YOLOv2 trained machine learning model between client, network, and service side processing to reduce the overall service latency. Assuming a client has 20% of the server computational resources, we observe a more than 12-fold reduction of service latency when incorporating our service split compared to on-client processing and and an increase in speed of more than 25% compared to performing everything on the server. Our approach is not only applicable to object detection, but can also be applied in a broad variety of machine learning-based applications and services.


Sign in / Sign up

Export Citation Format

Share Document