Congestion Resiliency for Data-Partitioned H.264/AVC Video Streaming Over IEEE 802.11e Wireless Networks

2012 ◽  
Vol 3 (1) ◽  
pp. 55-73 ◽  
Author(s):  
Ismail Ali ◽  
Sandro Moiron ◽  
Martin Fleury ◽  
Mohammed Ghanbari

This paper examines the impact of data partitioning form on wireless network access control and proposes a selective dropping scheme based on dropping the partition carrying intra-coded macroblocks. Data partitioning is an error resiliency technique that allows unequal error protection for transmission over ‘lossy’ channels. Including a per-picture, cyclic intra-refresh macroblock line guards against temporal error propagation. The authors show that when congestion occurs, it is possible to gain up to 2 dB in video quality over assigning a stream to a single IEEE 802.11e access category. The scheme is consistently advantageous in indoor and outdoor wireless scenarios over other ways of assigning the partitioned data packets to different access categories. This counter-intuitive scheme for access control purposes reverses the priority usually given to partition-B data packets over that of partition-C.

Author(s):  
Ismail Ali ◽  
Sandro Moiron ◽  
Martin Fleury ◽  
Mohammed Ghanbari

Intra-refresh macroblocks and data partitioning are two error-resilience tools aimed at video streaming over wireless networks. Intra-refresh macroblocks avoids the repetitive delays associated with periodic intra-coded frames, while also arresting temporal error propagation. Data-partitioning divides a compressed data stream according to the data importance, allowing packet prioritization schemes to be designed. This chapter reviews these and other error-resilience tools from the H.264 codec. As an illustration of the use of these tools, the chapter demonstrates a wireless access scheme that selectively drops packets that carry intra-refresh macroblocks. This counter-intuitive scheme actually results in better video quality than if packets containing transform coefficients were to be selectively dropped. Dropping only occurs when in the presence of wireless network congestion, as at other times the intra-coded macroblocks protect the video against random bit errors. Any packet dropping takes place under IEEE 802.11e, which is a quality-of-service addition to the IEEE 802.11 standard for wireless LANs. The chapter shows that, by this scheme, when congestion occurs, it is possible to gain up to 2 dB in video quality over assigning a stream to a single IEEE 802.11e access category. The scheme is shown to be consistently advantageous in indoor and outdoor wireless scenarios over other ways of assigning the partitioned data packets to different access categories. The chapter also contains a review of other research ideas using intra-refresh macroblocks and data-partitioning, as well as a look at the research outlook, now that the High Efficiency Video Codec (HEVC) has been released.


Author(s):  
Tien Huu Vu ◽  
Supavadee Aramvith

Recent researches in video transmission over heterogeneous networks move toward cross-layer design to realize the optimal video quality. In this work, we investigate the cross layer approach between H.264 video coding layer and IEEE 802.11e Medium Access Control (MAC) layer on the issues of how to improve error resiliency of H.264 video using Flexible Macroblock Ordering (FMO), and how to reduce packet dropping rate at MAC layer. We propose an adaptive FMO map generation to separate high and low important macroblocks to different priority queues based on the overflow state of MAC layer queues. The arrival rate of packets to queues is thus changed to reduce the queue overflow and to decrease of the packet droppingrates at queues. Experimental results show that using the proposed scheme can reduce the packet drop rate at the queues resulting in the reduction of packet loss rate and the improvement of the average PSNR.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Laith Al-Jobouri ◽  
Martin Fleury ◽  
Mohammed Ghanbari

Broadband wireless technology, though aimed at video services, also poses a potential threat to video services, as wireless channels are prone to error bursts. In this paper, an adaptive, application-layer Forward Error Correction (FEC) scheme protects H.264/AVC data-partitioned video. Data partitioning is the division of a compressed video stream into partitions of differing decoding importance. The paper determines whether equal error protection (EEP) through FEC of all partition types or unequal error protection (UEP) of the more important partition type is preferable. The paper finds that, though UEP offers a small reduction in bitrate, if EEP is employed, there are significant gains (several dBs) in video quality. Overhead from using EEP rather than UEP was found to be around 1% of the overall bitrate. Given that data partitioning already reduces errors through packet size reduction and differentiation of coding data, EEP with data partitioning is a practical means of protecting user-based video streaming. The gain from employing EEP is shown to be higher quality video to the user, which will result in a greater take-up of video services. The results have implications for other forms of prioritized video streaming.


Author(s):  
Rosinei Oliveira ◽  
Ádamo L. Santana ◽  
João C. W. A. Costa ◽  
Carlos R. L. Frances ◽  
Elisangela Aguiar ◽  
...  

It is expected that multimedia applications will be the most abundant application in the Internet and thousands of new wireless and mobile users will produce and share multimedia streaming content ubiquitously. In this multimedia-aware system, it is important to assure the end-to-end quality level support for video and voice applications in wireless systems. Traditional Quality of Service techniques assure the delivery of those services with packet differentiation assurance and indicate the impact of multimedia traffic only on the network performance; however, they do not reflect the user’s perception. Recent advances in multimedia are exploring new Quality of Experience approaches and including metrics and control schemes in wireless networking systems in order to increase the user´s satisfaction and optimize network resources. Operations based on Quality of Experience can be used as an indicator of how a networking environment meets the end-user’s needs and new assessment and packet control approaches are still important challenges. This chapter presents an overview of the most recent advances and challenges in assessment and traffic conditioner procedures for wireless multimedia streaming systems. In addition, an intelligent packet dropper mechanism for IEEE 802.11e systems is proposed and evaluated by using the Network Simulator 2, real video sequences and Evalvid tool. The benefit and the impact of the proposed solution is evaluated by using well-know objective and subjective Quality of Experience metrics, namely, Peak Signal-to-Noise Ratio, Video Quality Metric, Structural Similarity Index and Mean Option Score.


2012 ◽  
Vol 2012 ◽  
pp. 1-9
Author(s):  
Ismail A. Ali ◽  
Martin Fleury ◽  
Mohammed Ghanbari

This paper presents a prioritization scheme based on an analysis of the impact on objective video quality when dropping individual slices from coded video streams. It is shown that giving higher-priority classified packets preference in accessing the wireless media results in considerable quality gain (up to 3 dB in tests) over the case when no prioritization is applied. The proposed scheme is demonstrated for an IEEE 802.11e quality-of-service- (QoS-) enabled wireless LAN. Though more complex prioritization systems are possible, the proposed scheme is crafted for mobile interactive or user-to-user video services and is simply implemented within the Main or the Baseline profiles of an H.264 codec.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2872
Author(s):  
Miroslav Uhrina ◽  
Anna Holesova ◽  
Juraj Bienik ◽  
Lukas Sevcik

This paper deals with the impact of content on the perceived video quality evaluated using the subjective Absolute Category Rating (ACR) method. The assessment was conducted on eight types of video sequences with diverse content obtained from the SJTU dataset. The sequences were encoded at 5 different constant bitrates in two widely video compression standards H.264/AVC and H.265/HEVC at Full HD and Ultra HD resolutions, which means 160 annotated video sequences were created. The length of Group of Pictures (GOP) was set to half the framerate value, as is typical for video intended for transmission over a noisy communication channel. The evaluation was performed in two laboratories: one situated at the University of Zilina, and the second at the VSB—Technical University in Ostrava. The results acquired in both laboratories reached/showed a high correlation. Notwithstanding the fact that the sequences with low Spatial Information (SI) and Temporal Information (TI) values reached better Mean Opinion Score (MOS) score than the sequences with higher SI and TI values, these two parameters are not sufficient for scene description, and this domain should be the subject of further research. The evaluation results led us to the conclusion that it is unnecessary to use the H.265/HEVC codec for compression of Full HD sequences and the compression efficiency of the H.265 codec by the Ultra HD resolution reaches the compression efficiency of both codecs by the Full HD resolution. This paper also includes the recommendations for minimum bitrate thresholds at which the video sequences at both resolutions retain good and fair subjectively perceived quality.


Sign in / Sign up

Export Citation Format

Share Document