A New Progressive Method for Computing Skyline Queries

2017 ◽  
Vol 10 (3) ◽  
pp. 1-21
Author(s):  
Zekri Lougmiri

Skyline queries are important in many fields, especially for decision making. In this context, objects or tuples of databases are defined according to some numerical and non numerical attributes. The skyline operator acts on the numerical ones. The algorithms that implements this skyline operator are genrally of progressive or non progressive. The progressive ones return the skyline operator during its execution while non preogressive alogrithms return the result at the end of its execution. This paper presents a new progressive algorithm for computing the skyline points. This algorithm is based on sorting as a preprocessing of the input. The authors present new theorems for deducing promptly the first skyline points and reducing the candidate space. A new version of Divide-and-Conquer algorithm is used for computing the final skyline. Intensive experimentations on both real and synthetic datasets show that our algorithm presents best performance comparatively to other methods.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Israel F. Araujo ◽  
Daniel K. Park ◽  
Francesco Petruccione ◽  
Adenilton J. da Silva

AbstractAdvantages in several fields of research and industry are expected with the rise of quantum computers. However, the computational cost to load classical data in quantum computers can impose restrictions on possible quantum speedups. Known algorithms to create arbitrary quantum states require quantum circuits with depth O(N) to load an N-dimensional vector. Here, we show that it is possible to load an N-dimensional vector with exponential time advantage using a quantum circuit with polylogarithmic depth and entangled information in ancillary qubits. Results show that we can efficiently load data in quantum devices using a divide-and-conquer strategy to exchange computational time for space. We demonstrate a proof of concept on a real quantum device and present two applications for quantum machine learning. We expect that this new loading strategy allows the quantum speedup of tasks that require to load a significant volume of information to quantum devices.


Author(s):  
Afrand Agah ◽  
Mehran Asadi

This article introduces a new method to discover the role of influential people in online social networks and presents an algorithm that recognizes influential users to reach a target in the network, in order to provide a strategic advantage for organizations to direct the scope of their digital marketing strategies. Social links among friends play an important role in dictating their behavior in online social networks, these social links determine the flow of information in form of wall posts via shares, likes, re-tweets, mentions, etc., which determines the influence of a node. This article initially identities the correlated nodes in large data sets using customized divide-and-conquer algorithm and then measures the influence of each of these nodes using a linear function. Furthermore, the empirical results show that users who have the highest influence are those whose total number of friends are closer to the total number of friends of each node divided by the total number of nodes in the network.


Author(s):  
Cheng Meng ◽  
Ye Wang ◽  
Xinlian Zhang ◽  
Abhyuday Mandal ◽  
Wenxuan Zhong ◽  
...  

With advances in technologies in the past decade, the amount of data generated and recorded has grown enormously in virtually all fields of industry and science. This extraordinary amount of data provides unprecedented opportunities for data-driven decision-making and knowledge discovery. However, the task of analyzing such large-scale dataset poses significant challenges and calls for innovative statistical methods specifically designed for faster speed and higher efficiency. In this chapter, we review currently available methods for big data, with a focus on the subsampling methods using statistical leveraging and divide and conquer methods.


Sign in / Sign up

Export Citation Format

Share Document