Developing Local Association Network Based IoT Solutions for Body Parts Tagging and Tracking

Author(s):  
ZongWei Luo ◽  
Martin Lai ◽  
Mary Cheung ◽  
ShuiHua Han ◽  
Tianle Zhang ◽  
...  

Traditional Internet is commonly wired with machine to machine persistent connections. Evolving towards mobile and wireless pervasive networks, Internet has to entertain dynamic, transient, and changing interconnections. The vision of the Internet of Things furthers technology development by creating an interactive environment where smart objects are connected and can sense and react to the environment. Adopting such an innovative technology often requires extensive intelligence research. A major value indicator is how the potentials of RFID can translate into actions to improve business operational efficiency (Luo et al., 2008). In this paper, the authors will introduce a local association network with a coordinated P2P message delivery mechanism to develop Internet of Things based solutions body parts tagging and tracking. On site testing and performance evaluation validate the proposed approach. User feedback strengthens the belief that the proposed approach would help facilitate the technology adoption in body parts tagging and tracking.

Author(s):  
ZongWei Luo ◽  
Martin Lai ◽  
Mary Cheung ◽  
ShuiHua Han ◽  
Tianle Zhang ◽  
...  

Traditional Internet is commonly wired with machine to machine persistent connections. Evolving towards mobile and wireless pervasive networks, Internet has to entertain dynamic, transient, and changing interconnections. The vision of the Internet of Things furthers technology development by creating an interactive environment where smart objects are connected and can sense and react to the environment. Adopting such an innovative technology often requires extensive intelligence research. A major value indicator is how the potentials of RFID can translate into actions to improve business operational efficiency (Luo et al., 2008). In this paper, the authors will introduce a local association network with a coordinated P2P message delivery mechanism to develop Internet of Things based solutions body parts tagging and tracking. On site testing and performance evaluation validate the proposed approach. User feedback strengthens the belief that the proposed approach would help facilitate the technology adoption in body parts tagging and tracking.


2021 ◽  
pp. 1-14
Author(s):  
Fen Li ◽  
Oscar Sanjuán Martínez ◽  
R.S. Aiswarya

BACKGROUND: The modern Internet of Things (IoT) makes small devices that can sense, process, interact, connect devices, and other sensors ready to understand the environment. IoT technologies and intelligent health apps have multiplied. The main challenges in the sports environment are playing without injuries and healthily. OBJECTIVE: In this paper the Internet of Things-based Smart Wearable System (IoT-SWS) is introduced for monitoring sports person activity to improve sports person health and performance in a healthy way. METHOD: Wearable systems are commonly used to capture individual sports details on a real-time basis. Collecting data from wearable devices and IoT technologies can help organizations learn how to optimize in-game strategies, identify opponents’ vulnerabilities, and make smarter draft choices and trading decisions for a sportsperson. RESULTS: The experimental result shows that IoT-SWS achieve the highest accuracy of 98.22% and efficient in predicting the sports person’s health to improve sports person performance reliably.


Author(s):  
Zhiping Wang ◽  
Xinxin Zheng ◽  
Zhichen Yang

The Internet of Things (IoT) technology is an information technology developed in recent years with the development of electronic sensors, intelligence, network transmission and control technologies. This is the third revolution in the development of information technology. This article aims to study the algorithm of the Internet of Things technology, through the investigation of the hazards of athletes’ sports training, scientifically and rationally use the Internet of Things technology to collect data on safety accidents in athletes’ sports training, thereby reducing the risk of athletes’ sports training and making athletes better. In this article, the methods of literature research, analysis and condensing, questionnaire survey, theory and experiment combination, etc., investigate the safety accident data collection of the Internet of Things technology in athletes’ sports training, and provide certain theories and methods for future in-depth research practice basis. The experimental results in this article show that 82% of athletes who are surveyed under the Internet of Things technology will have partial injuries during training, reducing the risk of safety accidents in athletes’ sports training, and better enabling Chinese athletes to achieve a consistent level of competition and performance through a virtuous cycle of development.


2019 ◽  
Vol 3 (3) ◽  
pp. 159
Author(s):  
Moh Noor Al-Azam ◽  
Darian Rizaludin ◽  
Yulius Satmoko Raharjo ◽  
Aryo Nugroho

Message Queuing Telemetry Transport (MQTT) is a connectivity protocol between machines or now better known as the Internet of Things (IoT). This protocol recognizes two basic functions of M2M communication, namely publish and subscribe (pub/sub). The MQTT protocol is designed as a very simple and very lightweight message delivery protocol, designed for devices that are limited and with low bandwidth capacity, high latency or on an unreliable network. The design principles are to minimize bandwidth requirements and device resource requirements, and keep trying to ensure reliability and guaranteed delivery rates. In this paper, VerneMQ performance reliability is tested - one of the MQTT brokers, with several stressing levels using ESP-32 as a publisher and notebook with the python application as a subscriber.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4483 ◽  
Author(s):  
Iago Sestrem Ochôa ◽  
Luis Augusto Silva ◽  
Gabriel de Mello ◽  
Bruno Alves da Silva ◽  
Juan Francisco de Paz ◽  
...  

With the popularization of the Internet-of-Things, various applications have emerged to make life easier. These applications generate a large amount of user data. Analyzing the data obtained from these applications, one can infer personal information about each user. Considering this, it is clear that ensuring privacy in this type of application is essential. To guarantee privacy various solutions exist, one of them is UbiPri middleware. This paper presents a decentralized implementation of UbiPri middleware using the Ethereum blockchain. Smart contracts were used in conjunction with a communication gateway and a distributed storage service to ensure users privacy. The results obtained show that the implementation of this work ensures privacy at different levels, data storage security, and performance regarding scalability in the Internet of Things environments.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4330 ◽  
Author(s):  
Jo ◽  
Kim

Accompanying the advent of wireless networking and the Internet of Things (IoT), traditional augmented reality (AR) systems to visualize virtual 3D models of the real world are evolving into smart and interactive AR related to the context of things for physical objects. We propose the integration of AR and IoT in a complementary way, making AR scalable to cover objects everywhere with an acceptable level of performance and interacting with IoT in a more intuitive manner. We identify three key components for realizing such a synergistic integration: (1) distributed and object-centric data management (including for AR services); (2) IoT object-guided tracking; (3) seamless interaction and content interoperability. We survey the current state of these respective areas and herein discuss research on issues about realizing a future smart and interactive living environment.


Sign in / Sign up

Export Citation Format

Share Document