scholarly journals Natural agents as auxiliaries in water clarification: literature review and experimental evaluation

2020 ◽  
Vol 42 ◽  
pp. e44800
Author(s):  
João Paulo Nascimento Armeloni ◽  
Danieli Soares de Oliveira ◽  
Clainer Bravin Donadel

The increasing demand for water resources (primarily for human consumption and industrial and agricultural activity) is driven by socio-economic development, and population growth. Recent research has been focusing on alternative coagulants based on natural elements, as opposed to the commonly used iron and aluminum salts, for use in water and wastewater treatment processes. In this context, a thorough literature review on alternative coagulants and their application to water treatment processes has been conducted in this work. In addition, three experiments have been conducted with a widely used natural organic coagulant (Moringa oleifera). The alternative clarification system used is the helically coiled tube flocculator (HCTF), with high turbidity removal efficiency and low processing times. A comparative analysis of the turbidity reduction over time was performed with samples collected after 600, 900, 1200, 1500, 1800, 2100, 2400, and 2700 s from the hydraulic circuit. The process efficiency using the proposed alternative coagulant reached 95.3% (after 1800 s). The turbidity removal efficiency remained almost constant after 1800 s, with variations below 1%. These results prove that natural alternative agents can be powerful tools in the water treatment process, with efficiency values exceeding those obtained using chemicals (e.g., aluminum sulphate) as coagulant/ flocculant agents.

2000 ◽  
Vol 41 (7) ◽  
pp. 165-171 ◽  
Author(s):  
W. A. Hijnen ◽  
J. Willemsen-Zwaagstra ◽  
P. Hiemstra ◽  
G. J. Medema ◽  
D. van der Kooij

At eight full-scale water treatment plants in the Netherlands the removal of spores of sulphite-reducing clostridia (SSRC) was determined. By sampling and processing large volumes of water (1 up to 500 litres) SSRC were detected after each stage of the treatment. This enabled the assessment of the removal efficiency of the full-scale unit processes for persistent micro-organisms. A comparison with literature data on the removal of Cryptosporidium and Giardia by the same type of processes revealed that SSRC can be considered as a potential surrogate. The average Decimal Elimination Capacity (DEC) of the overall treatment plants ranged from 1.3–4.3 log. The observed actual log removal of SSRC by the unit processes and the overall treatment at one of the studied locations showed that the level of variation in removal efficiency was approximately 2 log. Moreover, from the actual log removal values it was observed that a low SSRC removal by one unit process is partly compensated by a higher removal by subsequent unit processes at this location. SSRC can be used for identification of the process conditions that cause variation in micro-organism removal which may lead to process optimization. Further research is necessary to determine the optimal use of SSRC in water quality monitoring for the production of microbiologically safe drinking water.


2017 ◽  
Vol 12 (3) ◽  
pp. 576-588 ◽  
Author(s):  
Seyed Ahmad Mirbagheri ◽  
Sima Malekmohamadi ◽  
Sheida Sohrabi Nasrabadi

Clarifying is one of the most crucial stages in water treatment at water treatment plants. Determining the type of the clarifier in water treatment plants and using it efficiently is necessary. In this study, a pilot is designed and constructed in which the pulsator, the superpulsator and the accelerator are simulated. For each system, turbidity removal efficiency for different influent turbidities and flow rates were studied and the optimum condition was obtained. The results showed that the superpulsator has a superior performance compared to the pulsator, and the pulsator has a superior performance compared to the accelerator and these differences are more sensible at higher flow rates. Also, the best condition for achieving the highest efficiency for the pulsator and the superpulsator is determined to be at flow rate 3 lit/min for an initial turbidity of 2,500 NTU with alum as the coagulant and the highest efficiency for the accelerator is determined to be at flow rate 3 lit/min for an initial turbidity of 2,500 NTU with ferric chloride as the coagulant. Comparing the turbidity removal efficiency shows that for 67% of the cases, ferric chloride has a better performance as the coagulant compared to alum and increasing the influent turbidity leads to an increase in the removal efficiency. Furthermore, three water treatment plants located in Tehran were studied and their characteristics were compared and suggestions were made to enhance their qualities.


2016 ◽  
Vol 22 (3) ◽  
pp. 34-39
Author(s):  
FLORINA FABIAN ◽  
VALENTIN NEDEFF ◽  
MIRELA PANAINTE -LEHADUS ◽  
OANA IRIMIA ◽  
SILVIA RACOVITA

In an international context in continuous development, water treatment processes become an important component of society where we live. Attention is directed on water treatment processes in the context of increasing water demand. This study proposes a systematic review of methods for the assessment of the environmental impact of Water Treatment process. The approach is based on the evaluation of LCA, Externalities Evaluation methodology and Carbon Footprint methodology, each of these methods have the environmental indicators able to relate direct and indirect emissions generated by any water treatment process. The present review compares and discusses the implementation of the above-cited methodologies to different case studies. The results in short show that Carbon Footprint only assesses the global warming potential of a water treatment plant, whereas Life Cycle Analysis and assess multiple environmental impact categories, which may include global warming, but also impacts on human health, ecosystems quality, etc. There are different standards and organizations around each assessment. The ExternE method on the contrary aims to quantify external impacts, from both economic and social points of view, to weight each endpoint of the impact categories.


Author(s):  
Manoj Kumar Karnena ◽  
Madhavi Konni ◽  
Bhavya Kavitha Dwarapureddi ◽  
Vara Saritha

Abstract: One of the several significant concerns related to water treatment plants is the transformation of natural organic matter (NOM) concerning quality and quantity due to the changing climatic conditions. The NOM consists of heterogeneous functionalized groups. Phenolic and carboxyl groups are the dominant groups that are pH-dependent and show a stronger affinity towards the metals. Properties of natural organic matter and trace elements govern the binding kinetics, influencing cations' binding to functionalized groups at lower pH. The water treatment process mechanisms like adsorption, coagulation, membrane filtration, and ion exchange efficiencies are sturdily influenced by the presence of NOM with cations and by the natural organic matter alone. The complexation among the natural organic matter and coagulants enhances the removal of NOM from the coagulation processes. The current review illustrates detailed interactions between natural organic matter and the potential impacts of cations on NOM in the water and wastewater treatment facilities.


2007 ◽  
Vol 55 (5) ◽  
pp. 117-125 ◽  
Author(s):  
G. Park ◽  
M. Yu ◽  
J. Go ◽  
E. Kim ◽  
H. Kim

Among the chemicals causing taste and odour (T&O) in drinking water, the most commonly identified and problematic ones are geosmin and 2-MIB (2-methylisoborneol). Since the reported odour thresholds of geosmin and 2-MIB are as low as 4 and 8.5 ng/L, respectively, they are not readily removed by conventional water treatment processes. In this study, ozone (O3) and ferrate (Fe(VI)) were applied to oxidise geosmin and 2-MIB. Their performances were compared in terms of removal efficiency of geosmin and 2-MIB. In the case of O3, removal efficiency of geosmin and 2-MIB ozonation at different initial O3 doses, H2O2/O3 ratios and water temperatures were evaluated. The oxidation rates of geosmin and 2-MIB by Fe(VI) were measured within pH 6–8. The effect of H2O2 addition was also evaluated. In summary, O3, especially with H2O2, could almost completely oxidise geosmin and 2-MIB, while Fe(VI) could not oxidise them more than 25% at any pH that was considered in this study. This was attributed to the structure of the organics and high reaction selectivity of Fe(VI). Further study should be conducted to find the reason of inhibition of oxidation by Fe(VI).


2013 ◽  
Vol 699 ◽  
pp. 279-283
Author(s):  
Jin Xiang Fu ◽  
Hui Liu ◽  
Rong Xin Zhang

In order to improve beer sterilization effect of wastewater treatment, reduce the heat load of the sterilization wastewater on subsequent water treatment processes. In this paper, through optimizing transformation developed micro-flocculation -membrane treatment processes. Screening for the identification of inorganic polymeric aluminum ferric chloride flocculants as the technology. The best dosage was 15mg / L, the field test to verify the craft beer sterilized wastewater treatment effect. The results show that, micro flocculation membrane treatment process in the water after treatment of COD and turbidity removal rate is respectively 76% and 98%. To illustrate the use of this technology in the treatment of beer sterilizing water without two stage filtration, can effectively recycling sterilized wastewater.


Sign in / Sign up

Export Citation Format

Share Document