Review of Residual Stress Determination and Exploitation Techniques Using X-Ray Diffraction Method

Author(s):  
M. Belassel ◽  
J. Pineault ◽  
M.E. Brauss
2006 ◽  
Vol 524-525 ◽  
pp. 229-234
Author(s):  
M. Belassel ◽  
J. Pineault ◽  
M.E. Brauss

Although x-ray diffraction techniques have been applied to the measurement of residual stress in the industry for decades, some of the related details are still unclear to many production and mechanical testing engineers working in the field. This is because these details, specifically those associated with the transition between diffraction and mechanics, are not always emphasized in the literature. This paper will emphasize the appropriate calculation methods and the steps necessary to perform high quality residual stress measurements. Additionally, details are given regarding the difference between mechanical and x-ray elastic constants, as well as the true meaning of stress and strain from both diffraction and strain gage point of view. Cases where the material is subject to loading above the yield limit are also included.


2017 ◽  
Vol 122 (19) ◽  
pp. 195105 ◽  
Author(s):  
Mathieu Guerain ◽  
Jean-Luc Grosseau-Poussard ◽  
Guillaume Geandier ◽  
Benoit Panicaud ◽  
Nobumichi Tamura ◽  
...  

2006 ◽  
Vol 524-525 ◽  
pp. 267-272 ◽  
Author(s):  
Axel Steuwer ◽  
Matthew J. Peel ◽  
Thomas Buslaps

In this paper we discuss certain aspects of residual stress measurements using energy-dispersive synchrotron X-ray diffraction using very high X-ray energies in the range up to 200keV. In particular, we focus on the strain resolution and its relation to the geometric contribution to the instrumental resolution. This energy range together with the brilliance of insertion devices allows measurements in bulk materials with penetration approaching those of neutrons, and the technique is demonstrated to have a high potential for residual stress determination. However, the use of high X-ray energies implies a relatively small diffraction angle and in turn a relatively elongated gauge volume, which favours the application of the technique to essentially 2D problems.


Sign in / Sign up

Export Citation Format

Share Document