Correlation between Room Temperature Photoluminescence and Resistivity in Semiinsulating Silicon Carbide

Author(s):  
Sashi Kumar Chanda ◽  
Yaroslav Koshka ◽  
Murugesu Yoganathan
2004 ◽  
Vol 815 ◽  
Author(s):  
Spyros Gallis ◽  
Harry Efstathiadis ◽  
Mengbing Huang ◽  
Alain E. Kaloyeros ◽  
Ei Ei Nyein ◽  
...  

AbstractIn the present work, strong room-temperature photoluminescence (PL) at 1540 nm is reported from erbium-implanted and post-annealed amorphous silicon carbide (a-SiC:Er) films. The stoichiometric SiC films were grown by thermal chemical vapor deposition (TCVD) at 800°C, and then implanted to Er fluence of 3×1015 ions/cm2 using 380 keV implantation energy. Post-implantation annealing was carried out at the temperature range of 550°C to 1350°C in argon (Ar) ambient. The resulting SiC films were characterized by Auger electron spectroscopy (AES), Rutherford backscattering (RBS), Fourier transform infrared spectroscopy (FTIR), nuclear reaction analysis (NRA), x-ray diffraction (XRD), and high-resolution transmission electron microscope (HRTEM). Clear PL behavior was seen from the annealed a-SiC:Er samples, even at room temperature, with PL intensity reaching a maximum for samples annealed at 900°C.Additional studies of thermal quenching of Er luminescence from a-SiC:Er samples annealed at 900°C indicated that as the sample temperature increased from 14K to room temperature, the luminescence intensity at 1540 nm dropped by a factor of ∼ 3.6. Moreover, the PL spectra of the a-SiC:Er samples did not exhibit any defect-generated luminescence. It is suggested that the lower density of Si and C vacancies in the stoichiometric a-SiC:Er, as compared to its non-stoichiometric a-Si1-xCx counterpart, along with the incorporation of a higher Er dopant concentration, can effectively diminish defect-produced luminescence and lead to a significant improvement in PL performance.These properties suggest that stoichiometric a-SiC:Er may be a good candidate for producing optoelectronic devices operating in the 1540 nm region.


2013 ◽  
Vol 740-742 ◽  
pp. 19-22 ◽  
Author(s):  
Valdas Jokubavicius ◽  
Michl Kaiser ◽  
Philip Hens ◽  
Peter J. Wellmann ◽  
Rickard Liljedahl ◽  
...  

Fluorescent silicon carbide was grown using the fast sublimation growth process on low off-axis 6H-SiC substrates. In this case, the morphology of the epilayer and the incorporation of dopants are influenced by the Si/C ratio. Differently converted tantalum foils were introduced into the growth cell in order to change vapor phase stochiometry during the growth. Fluorescent SiC grown using fresh and fully converted tantalum foils contained morphological instabilities leading to lower room temperature photoluminescence intensity while an improved morphology and optical stability was achieved with partly converted tantalum foil. This work reflects the importance of considering the use of Ta foil in sublimation epitaxy regarding the morphological and optical stability in fluorescent silicon carbide.


1998 ◽  
Vol 227-230 ◽  
pp. 488-492 ◽  
Author(s):  
E.I Terukov ◽  
V.Kh Kudoyarova ◽  
A.N Kuznetsov ◽  
W Fuhs ◽  
G Weiser ◽  
...  

2010 ◽  
Vol 645-648 ◽  
pp. 355-358 ◽  
Author(s):  
Rii Hirano ◽  
Michio Tajima ◽  
Kohei M. Itoh

We investigated the optical properties of stacking faults (SFs) in cubic silicon carbide by photoluminescence (PL) spectroscopy and mapping. The room-temperature PL spectra consisted of a 2.3 eV peak due to nitrogen and two undefined broad peaks at 1.7 eV and 0.95 eV. On the PL intensity mapping for the 2.3 eV peak, SFs appeared as dark lines. SFs which expose carbon atoms (SFC) and silicon atoms (SFSi) on the surface appeared as bright lines and dark lines, respectively, in PL mapping for the 1.7 eV and 0.95 eV peaks. We believe the two undefined peaks are associated with SFC. This technique allows us to detect SFs nondestructively and to distinguish between SFC and SFSi. We further suggest the presence of inhomogeneous stress around SFCs based on the broadening of the 2.3 eV peak.


2003 ◽  
Vol 769 ◽  
Author(s):  
Asha Sharma ◽  
Deepak ◽  
Monica Katiyar ◽  
Satyendra Kumar ◽  
V. Chandrasekhar ◽  
...  

AbstractThe optical degradation of polysilane copolymer has been studied in spin cast thin films and solutions using light source of 325 nm wavelength. The room temperature photoluminescence (PL) spectrum of these films show a sharp emission at 368 nm when excited with a source of 325 nm. However, the PL intensity deteriorates with time upon light exposure. Further the causes of this degradation have been examined by characterizing the material for its transmission behaviour and changes occurring in molecular weight as analysed by GPC data.


2019 ◽  
Vol 12 (03) ◽  
pp. 1950032 ◽  
Author(s):  
Yuchen Deng ◽  
Yaming Zhang ◽  
Nanlong Zhang ◽  
Qiang Zhi ◽  
Bo Wang ◽  
...  

Pure dense silicon carbide (SiC) ceramics were obtained via the high-temperature physical vapor transport (HTPVT) method using graphite paper as the growth substrate. The phase composition, the evolution of microstructure, the thermal diffusivity and thermal conductivity at RT to 200∘C were investigated. The obtained samples had a relative density of higher than 98.7% and a large grain size of 1[Formula: see text]mm, the samples also had a room-temperature thermal conductivity of [Formula: see text] and with the temperature increased to 200∘C, the thermal conductivity still maintained at [Formula: see text].


ACS Photonics ◽  
2021 ◽  
Author(s):  
Tomojit Chowdhury ◽  
Kiyoung Jo ◽  
Surendra B. Anantharaman ◽  
Todd H. Brintlinger ◽  
Deep Jariwala ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document