A Cyclic Stress-Strain Constitutive Model for Polycrystalline Magnesium Alloy and its Application

Author(s):  
Xiang Guo Zeng ◽  
Qing Yuan Wang ◽  
Jing Hong Fan ◽  
Zhan Hua Gao ◽  
Xiang He Peng
2007 ◽  
Vol 546-549 ◽  
pp. 81-88
Author(s):  
Xiang Guo Zeng ◽  
Qing Yuan Wang ◽  
Jing Hong Fan ◽  
Zhan Hua Gao ◽  
Xiang He Peng

The stress-strain behavior of cast magnesium alloy (AM60) was investigated by strain-controlled cyclic testing carried out on MTS. In order to describe the cyclic stress and strain properties of AM60 by means of the energy storing characteristics of microstructure during irreversible deformation, a plastic constitutive model with no yielding surface was developed for single crystal by adopting a spring-dashpot mechanical system. Plastic dashpots reflecting the material transient response were introduced to describe the plasticity of slip systems. By utilizing the KBW self-consistent theory, a polycrystalline plastic constitutive model for Magnesium alloy was formed. The numerical analysis in the corresponding algorithm is greatly simplified as no process of searching for the activation of the slip systems and slip directions is required. The cyclic stress-strain behavior, based on this model, is discussed. The simulation results show good agreement with the experimental data for AM60.


2000 ◽  
Author(s):  
K. M. Zhao ◽  
J. K. Lee

Abstract The main objective of this paper is to generate cyclic stress-strain curves for sheet metals so that the springback can be simulated accurately. Material parameters are identified by an inverse method within a selected constitutive model that represents the hardening behavior of materials subjected to a cyclic loading. Three-point bending tests are conducted on sheet steels (mild steel and high strength steel). Punch stroke, punch load, bending strain and bending angle are measured directly during the tests. Bending moments are then computed from these measured data. Bending moments are also calculated based on a constitutive model. Normal anisotropy and nonlinear isotropic/kinematic hardening are considered. Material parameters are identified by minimizing the normalized error between two bending moments. Micro genetic algorithm is used in the optimization procedure. Stress-strain curves are generated with the material parameters found in this way, which can be used with other plastic models.


2000 ◽  
Vol 123 (4) ◽  
pp. 391-397 ◽  
Author(s):  
K. M. Zhao ◽  
J. K. Lee

The main objective of this paper is to obtain the first few stress-strain loops of sheet metals from reverse loading so that the springback can be simulated accurately. Material parameters are identified by an inverse method within a selected constitutive model that represents the hardening behavior of materials subjected to a cyclic loading. Three-point bending tests are conducted on sheet steels (mild steel and high strength steel). Punch stroke, punch load, bending strain, and bending angle are measured directly during the tests. Bending moments are then computed from these measured data. Bending moments are also calculated based on a constitutive model. Normal anisotropy and nonlinear isotropic/kinematic hardening are considered. Material parameters are identified by minimizing the normalized error between two bending moments. Micro-genetic algorithm is used in the optimization procedure. Stress-strain curves are generated with the material parameters found in this way, which can be used with other plastic models.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1393
Author(s):  
Xiaochang Duan ◽  
Hongwei Yuan ◽  
Wei Tang ◽  
Jingjing He ◽  
Xuefei Guan

This study develops a general temperature-dependent stress–strain constitutive model for polymer-bonded composite materials, allowing for the prediction of deformation behaviors under tension and compression in the testing temperature range. Laboratory testing of the material specimens in uniaxial tension and compression at multiple temperatures ranging from −40 ∘C to 75 ∘C is performed. The testing data reveal that the stress–strain response can be divided into two general regimes, namely, a short elastic part followed by the plastic part; therefore, the Ramberg–Osgood relationship is proposed to build the stress–strain constitutive model at a single temperature. By correlating the model parameters with the corresponding temperature using a response surface, a general temperature-dependent stress–strain constitutive model is established. The effectiveness and accuracy of the proposed model are validated using several independent sets of testing data and third-party data. The performance of the proposed model is compared with an existing reference model. The validation and comparison results show that the proposed model has a lower number of parameters and yields smaller relative errors. The proposed constitutive model is further implemented as a user material routine in a finite element package. A simple structural example using the developed user material is presented and its accuracy is verified.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 529
Author(s):  
Chunzhi Du ◽  
Zhifan Li ◽  
Bingfei Liu

Nanoporous Shape Memory Alloys (SMA) are widely used in aerospace, military industry, medical and health and other fields. More and more attention has been paid to its mechanical properties. In particular, when the size of the pores is reduced to the nanometer level, the effect of the surface effect of the nanoporous material on the mechanical properties of the SMA will increase sharply, and the residual strain of the SMA material will change with the nanoporosity. In this work, the expression of Young’s modulus of nanopore SMA considering surface effects is first derived, which is a function of nanoporosity and nanopore size. Based on the obtained Young’s modulus, a constitutive model of nanoporous SMA considering residual strain is established. Then, the stress–strain curve of dense SMA based on the new constitutive model is drawn by numerical method. The results are in good agreement with the simulation results in the published literature. Finally, the stress-strain curves of SMA with different nanoporosities are drawn, and it is concluded that the Young’s modulus and strength limit decrease with the increase of nanoporosity.


Sign in / Sign up

Export Citation Format

Share Document