Cavitation Behavior of Fine-Grained 1420 Al-Li Alloy during Superplastic Deformation

Author(s):  
Jie Shao ◽  
He Ping Guo ◽  
Zhi Qiang Li ◽  
X.Q. Han
2007 ◽  
Vol 551-552 ◽  
pp. 203-208 ◽  
Author(s):  
Wei Neng Tang ◽  
Hong Yan ◽  
Rong Shi Chen ◽  
En Hou Han

Superplastic deformation (SPD) behaviors of two fine-grained materials produced by ECAE and hot rolling methods have been contrastively studied in this paper. It is found that the optimum superplastic condition in as-ECAEed material was at 350°C and 1.7×10-3s-1 with elongation to failure about 800%; while in as-rolled material, the largest elongation to failure about 1000% was obtained at 480°C and 5.02×10-4s-1. Microstructure observation showed that grain evolution and cavitation behavior were different in these two materials during superplastic deformation. The controlled mechanisms for superplasticity, i.e. grain boundary sliding (GBS), dislocation creep and diffusional creep, at different deformation conditions were discussed in terms of strain rate sensitivity coefficient, stress exponent and activity energy.


2017 ◽  
Vol 693 ◽  
pp. 749-759 ◽  
Author(s):  
Liang Cheng ◽  
Jinshan Li ◽  
Xiangyi Xue ◽  
Bin Tang ◽  
Hongchao Kou ◽  
...  

2018 ◽  
Vol 8 (4) ◽  
pp. 538-542
Author(s):  
P. Minárik ◽  
T. Vávra ◽  
J. Stráský ◽  
B. Hadzima ◽  
R. Král

2007 ◽  
Vol 551-552 ◽  
pp. 621-626
Author(s):  
Young Gun Ko ◽  
Yong Nam Kwon ◽  
Jung Hwan Lee ◽  
Dong Hyuk Shin ◽  
Chong Soo Lee

Cavitation behavior during superplastic flow of ultra-fine grained (UFG) Ti-6Al-4V alloy was established with the variation of grain size and misorientation. After imposing an effective strainup to 8 via equal-channel angular pressing (ECAP) at 873 K, alpha-phase grains were markedly refined from 11 μm to ≈ 0.3 μm, and misorientation angle was increased. Uniaxial-tension tests were conducted for initial coarse grained (CG) and two UFG alloys (ε = 4 and 8) at temperature of 973 K and strain rate of 10-4 s-1. Quantitative measurements of cavitation evidenced that both the average size and the area fraction of cavities significantly decreased with decreasing grain size and/or increasing misorientation. It was also found that, when compared to CG alloy, cavitation as well as diffused necking was less prevalent in UFG alloys, which was presumably due to the higher value of strain-rate sensitivity. Based on the several theoretical models describing the cavity growth behavior, the cavity growth mechanism in UFG alloys was suggested.


2019 ◽  
Vol 6 (9) ◽  
pp. 096584 ◽  
Author(s):  
A O Mosleh ◽  
A V Mikhaylovskaya ◽  
A D Kotov ◽  
M Sitkina ◽  
P Mestre-Rinn ◽  
...  

2002 ◽  
Vol 17 (5) ◽  
pp. 1172-1177
Author(s):  
Jondo Yun ◽  
Ye T. Chou ◽  
Martin P. Harmer

Superplastic deformation was studied in fine-grained (0.7–1.1 μm) YBa2Cu3O7–x/Ag composites containing 2.5–25 vol% Ag. The compression tests were conducted in the temperature range of 750–875 °C and at strain rates of 10−5 to 10−3/s. For the YBa2Cu3O7−x/25%Ag composites with grain size of 0.7–1.1 μm, deformed at 800–850 °C and 10−5 to 10−3/s, the stress exponent, grain size exponent, and the activation energy of deformation were 2.0 ± 0.1, 2.5 ± 0.7, and 760 ± 100 kJ/mol, respectively. These values were the same as those of the pure YBa2Cu3O7−x, indicating that the deformation of the composite was controlled by that of the rigid YBa2Cu3O7−x phase. However, the strain rate was increased by the addition of silver as explained by the soft inclusion model of Chen. The dependence of the flow stress on the silver content was in close agreement with the prediction of the model.


2016 ◽  
Vol 849 ◽  
pp. 162-167
Author(s):  
Geng Hua Cao ◽  
Da Tong Zhang

Cast Mg-4.27Y-2.94Nd-0.51Zr (wt.%) alloy was subjected to submerged friction stir processing (SFSP) with at a rotation rate of 600 rpm and a traveling speed of 60 mm min-1. Superplastic behavior of specimens with an average grain size of ~1.3 μm were investigated in the temperature ranges of 683-758 K and the strain rate ranges from 1×10-1 to 4×10-4 s-1. Microstructure characteristics were investigated by optical microscopy, scanning electron microscopy and transmission electron microscopy. The results show that the maximum elongation of 967% was obtained at 733 K and 3×10-3 s-1, the optimal HSRS of 900% achieved at 758 K and 2×10-2 s-1. Grains and second phase particles grew coarser with the increasing temperature or decreasing strain rate. Remarkable grain growth is the main reason that elongations are all significantly decreased when the strain rate decrease from 3×10-3 s-1 to 4×10-4 s-1. Grain boundary sliding is the main mechanism during superplastic deformation.


2011 ◽  
Vol 10 ◽  
pp. 3471-3476
Author(s):  
Yong-Nam Kwon ◽  
Sang-Hyun Kim ◽  
Young Seon Lee

2016 ◽  
Vol 838-839 ◽  
pp. 59-65 ◽  
Author(s):  
Hiroyuki Watanabe ◽  
Tokuteru Uesugi ◽  
Yorinobu Takigawa ◽  
Kenji Higashi

Texture change during superplastic deformation was examined and compared in two magnesium alloys with different chemical composition. These alloys were extruded to refine the microstructure. The pre-existing basal texture of both alloys became slightly more random within the bulk probably owing to grain boundary sliding and the accompanying grain rotation. However, the texture changes differed between tensile and compressive deformation along the extrusion (longitudinal) direction. This fact suggests that dislocation slip is important in superplastic deformation. It was concluded that dislocation slip acts primarily as an accommodation mechanism for grain boundary sliding.


Sign in / Sign up

Export Citation Format

Share Document