A Comparative Study on Superplasticity of Mg-Zn-Y-Zr Processed by ECAE and Hot Rolling

2007 ◽  
Vol 551-552 ◽  
pp. 203-208 ◽  
Author(s):  
Wei Neng Tang ◽  
Hong Yan ◽  
Rong Shi Chen ◽  
En Hou Han

Superplastic deformation (SPD) behaviors of two fine-grained materials produced by ECAE and hot rolling methods have been contrastively studied in this paper. It is found that the optimum superplastic condition in as-ECAEed material was at 350°C and 1.7×10-3s-1 with elongation to failure about 800%; while in as-rolled material, the largest elongation to failure about 1000% was obtained at 480°C and 5.02×10-4s-1. Microstructure observation showed that grain evolution and cavitation behavior were different in these two materials during superplastic deformation. The controlled mechanisms for superplasticity, i.e. grain boundary sliding (GBS), dislocation creep and diffusional creep, at different deformation conditions were discussed in terms of strain rate sensitivity coefficient, stress exponent and activity energy.

2011 ◽  
Vol 299-300 ◽  
pp. 94-97
Author(s):  
Feng Li ◽  
Sheng Guo ◽  
Xin Che ◽  
Li Jia Chen

Equal channel angular pressing (ECAP) was conducted using the die with a 90° angled channel under routes A, BC and C for hot extruded AZ91 magnesium alloy. Tensile tests were carried out at 300 °C and initial strain rates ranging from 2×10−4 to 5×10−3 s−1. The experimental results show that different routes have obviously effect on elongation to failure. It is found that the highest elongation to failure is 410 % at a strain rate of 2×10−4 s−1 for the ECAPed AZ91 alloy with route BC. At the same strain rate, route BC can bring the greater superplasticitic deformation compared with routes A and C. Moreover, the strain rate sensitivity coefficient m values of about 0.3 to 0.5 are attained for the ECAPed AZ91 alloys with different routes. For the ECAPed AZ91 alloys, the main superplastic deformation mechanism is the grain boundary sliding, while the main accommodation mechanism is the dislocation creep mechanism controlled by the grain boundary diffusion.


2016 ◽  
Vol 838-839 ◽  
pp. 256-260
Author(s):  
Takahiko Yano ◽  
Naoko Ikeo ◽  
Hiroyuki Watanabe ◽  
Toshiji Mukai

Superplastic deformation behavior was investigated for a dual-phase Mg-Ca alloy. The elongation-to-failure reached more than 120% with the strain rate sensitivity, m, over 0.4. The activation energy required for the deformation was estimated to be 98 kJ/mol which is close to the activation energy for grain boundary diffusion in magnesium. Therefore, the superplastic deformation mechanism was suggested to be the grain boundary sliding rate, which is controlled by boundary diffusion.


2018 ◽  
Vol 385 ◽  
pp. 53-58 ◽  
Author(s):  
Asiya Samigullina ◽  
Mariya Murzinova ◽  
Aygul Mukhametgalina ◽  
Alexander P. Zhilyaev ◽  
Ayrat A. Nazarov

Effect of ultrasonic treatment (UST) with an amplitude of oscillating tension-compression stresses 100 MPa on the characteristics of superplastic deformation of Ti-6Al-4V alloy with an ultrafine grained (UFG) structure processed by equal-channel angular pressing (ECAP) is studied. During tensile tests at 600°C with initial strain rates in the interval from 10-4 to 10-3 s-1, ultrasonically irradiated samples exhibit a reduced flow stress, higher values of the strain rate sensitivity coefficient and elongation to failure as compared to the samples tested directly after ECAP. Detailed studies of the microstructure of samples subjected to ECAP only and ECAP followed by UST revealed no considerable differences. It is suggested that the UST affected fine structure of the material bringing them to a state with a higher ability of relaxation of deformation-induced defects.


2008 ◽  
Vol 584-586 ◽  
pp. 164-169 ◽  
Author(s):  
Krystof Turba ◽  
Premysl Malek ◽  
Edgar F. Rauch ◽  
Miroslav Cieslar

Equal-channel angular pressing (ECAP) at 443 K was used to introduce an ultra-fine grained (UFG) microstructure to a Zr and Sc modified 7075 aluminum alloy. Using the methods of TEM and EBSD, an average grain size of 0.6 1m was recorded after the pressing. The UFG microstructure remained very stable up to the temperature of 723 K, where the material exhibited high strain rate superplasticity (HSRSP) with elongations to failure of 610 % and 410 % at initial strain rates of 6.4 x 10-2 s-1 and 1 x 10-1 s-1, respectively. A strain rate sensitivity parameter m in the vicinity of 0.45 was observed at temperatures as high as 773 K. At this temperature, the material still reached an elongation to failure of 430 % at 2 x 10-2 s-1. These results confirm the stabilizing effect of the Zr and Sc additions on the UFG microstructure in a 7XXX series aluminum alloy produced by severe plastic deformation.


2012 ◽  
Vol 735 ◽  
pp. 146-151 ◽  
Author(s):  
Andrey V. Kuznetsov ◽  
Dmitry G. Shaisultanov ◽  
Nikita Stepanov ◽  
Gennady A. Salishchev ◽  
Oleg N. Senkov

An AlCoCrCuFeNi high entropy alloy was multiaxially isothermally forged at 950°C to produce a fine equiaxed structure with the average grain/particle size of ~1.5 µm. The forged alloy exhibited superplastic behavior in the temperature range of 800-1000°C. For example, during deformation at a strain rate of 10-3 s-1, tensile ductility increased from 400% to 860% when the temperature increased from 800°C to 1000°C. An increase in strain rate from 10-4 to 10-2 s-1 at T = 1000°C did not affect ductility: elongation to failure was about 800%. The strain rate sensitivity of the flow stress was rather high, m = 0.6, which is typical to the superplastic behavior. The equiaxed morphology of grains and particles retained after the superplastic deformation, although some grain/particle growth was observed.


2012 ◽  
Vol 735 ◽  
pp. 93-100
Author(s):  
Alexander J. Carpenter ◽  
Anthony J. Barnes ◽  
Eric M. Taleff

Complex sheet metal components can be formed from lightweight aluminum and magnesium sheet alloys using superplastic forming technologies. Superplastic forming typically takes advantage of the high strain-rate sensitivity characteristic of grain-boundary-sliding (GBS) creep to obtain significant ductility at high temperatures. However, GBS creep requires fine-grained materials, which can be expensive and difficult to manufacture. An alternative is provided by materials that exhibit solute-drag (SD) creep, a mechanism that also produces elevated values of strain-rate sensitivity. SD creep typically operates at lower temperatures and faster strain rates than does GBS creep. Unlike GBS creep, solute-drag creep does not require a fine, stable grain size. Previous work by Boissière et al. suggested that the Mg-Y-Nd alloy, essentially WE43, deforms by SD creep at temperatures near 400°C. The present investigation examines both tensile and biaxial deformation behavior of ElektronTM 43 sheet, which has a composition similar to WE43, at temperatures ranging from 400 to 500°C. Data are presented that provide additional evidence for SD creep in Elektron 43 and demonstrate the remarkable degree of biaxial strain possible under this regime (>1000%). These results indicate an excellent potential for producing complex 3-D parts, via superplastic forming, using this particular heat-treatable Mg alloy.


2018 ◽  
Author(s):  
Alberto Ceccato ◽  
Luca Menegon ◽  
Giorgio Pennacchioni ◽  
Luiz Fernando Grafulha Morales

Abstract. At mid-crustal conditions, deformation of feldspar is mainly accomplished by a combination of fracturing, dissolution/precipitation and reaction-weakening mechanisms. In particular, K-feldspar is reaction-weakened by formation of strain-induced myrmekite – a fine-grained symplectite of plagioclase and quartz. Here we investigate with EBSD the microstructure of a granodiorite mylonite, developed at 420–460 °C during cooling of the Rieserferner pluton (Eastern Alps), to assess the microstructural processes and the role of weakening associated with myrmekite development. Our analysis shows that the crystallographic orientation of the plagioclase of pristine myrmekite was controlled by that of the replaced K-feldspar. Myrmekite nucleation resulted in both grain size reduction and ordered phase mixing by heterogeneous nucleation of quartz and plagioclase. The fine grain size of sheared myrmekite promoted grain size-sensitive creep mechanisms including fluid-assisted grain boundary sliding in plagioclase, coupled with heterogeneous nucleation of quartz within creep cavitation pores. Flow laws calculated for monomineralic quartz, feldspar, and quartz + plagioclase aggregates (sheared myrmekite), show that during mylonitization at 450 °C, grain-size-sensitive creep in sheared myrmekite accommodated strain rates several orders of magnitude higher than monomineralic quartz layers deforming by dislocation creep. Therefore, diffusion creep and grain size-sensitive processes contributed significantly to bulk rock weakening during mylonitization. Our results have implications for modelling the rheology of the mid-upper continental (felsic) crust.


2012 ◽  
Vol 735 ◽  
pp. 347-352
Author(s):  
Ilya Nikulin ◽  
Alla Kipelova ◽  
Rustam Kaibyshev

An ultra-fine grained structure with an average size of ~ 1 μm was produced in a commercial Al–5.4%Mg–0.5%Mn–0.1%Zr–0.12%Si–0.014%Fe alloy by hot equal-channel angular pressing (ECAP) followed by isothermal rolling (IR). It was found that in the strain rate interval from 5.6×10-4to 2.8×10-2s-1the alloy exhibits a low-temperature superplasticity with elongation-to-failure exceeding 400% and the strain rate sensitivity coefficient of ~0.3. The highest elongation-to-failure of ~ 620% appeared at a temperature of ~ 275°C and an initial strain rate of ~ 5.6×10-3s-1. The relationship between superplastic properties and microstructural evolution of the examined alloy is discussed.


Sign in / Sign up

Export Citation Format

Share Document