Enhanced In Vitro Apatite-Forming Ability of Sol-Gel Derived Titania Films by Ultraviolet Irradiation

Author(s):  
T. Shozui ◽  
Kanji Tsuru ◽  
Satoshi Hayakawa ◽  
Akiyoshi Osaka
2007 ◽  
Vol 361-363 ◽  
pp. 601-604 ◽  
Author(s):  
T. Shozui ◽  
Kanji Tsuru ◽  
Satoshi Hayakawa ◽  
Akiyoshi Osaka

2007 ◽  
Vol 330-332 ◽  
pp. 633-636 ◽  
Author(s):  
T. Shozui ◽  
Kanji Tsuru ◽  
Satoshi Hayakawa ◽  
Akiyoshi Osaka

Titania films were coated by means of sol-gel method on various substrates such as titanium, titanium alloy, silicon wafer, stainless-steel, alumina, and glass slide where they coded as C5Ti, C5Ti6Al4V, C5Si, C5SUS, C5Al2O3 and C5GS, respectively. Their in vitro apatite-forming ability was examined with the Kokubo’s simulated body fluid (SBF; pH 7.4, 36.5°C). C5Ti, C5Ti6Al4V and C5Si deposited apatite particles on their surface within 7 days, whereas, C5SUS, C5Al2O3 and C5GS did not. These results implied that the in vitro apatite-forming ability of the titania films indirectly depended on the chemical or physical properties of the substrates.


2020 ◽  
Author(s):  
Shatadru Chakravarty ◽  
Jeremy Hix ◽  
Kaitlyn Wieweora ◽  
Maximilian Volk ◽  
Elizabeth Kenyon ◽  
...  

Here we describe the synthesis, characterization and in vitro and in vivo performance of a series of tantalum oxide (TaOx) based nanoparticles (NPs) for computed tomography (CT). Five distinct versions of 9-12 nm diameter silane coated TaOx nanocrystals (NCs) were fabricated by a sol-gel method with varying degrees of hydrophilicity and with or without fluorescence, with the highest reported Ta content to date (78%). Highly hydrophilic NCs were left bare and were evaluated in vivo in mice for micro-CT of full body vasculature, where following intravenous injection, TaOx NCs demonstrate high CT contrast, circulation in blood for ~ 3 h, and eventual accumulation in RES organs; and following injection locally in the mammary gland, where the full ductal tree structure can be clearly delineated. Partially hydrophilic NCs were encapsulated within mesoporous silica nanoparticles (MSNPs; TaOx@MSNPs) and hydrophobic NCs were encapsulated within poly(lactic-co-glycolic acid) (PLGA; TaOx@PLGA) NPs, serving as potential CT-imagable drug delivery vehicles. Bolus intramuscular injections of TaOx@PLGA NPs and TaOx@MSNPs to mimic the accumulation of NPs at a tumor site produce high signal enhancement in mice. In vitro studies on bare NCs and formuated NPs demonstrate high cytocompatibility and low dissolution of TaOx. This work solidifies that TaOx-based NPs are versatile contrast agents for CT.


2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Alexandre Pancotti ◽  
Dener Pereira Santos ◽  
Dielly Oliveira Morais ◽  
Mauro Vinícius de Barros Souza ◽  
Débora R. Lima ◽  
...  

AbstractIn this study, we report the synthesis and characterization of NiFe2O4 and CoFe2O4 nanoparticles (NPs) which are widely used in the biomedical area. There is still limited knowledge how the properties of these materials are influenced by different chemical routes. In this work, we investigated the effect of heat treatment over cytotoxicity of cobalt and niquel ferrites NPs synthesized by sol-gel method. Then the samples were studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), Fourier Transform Infrared Spectroscopy Analysis (FTIR), and X-ray fluorescence (XRF). The average crystallite sizes of the particles were found to be in the range of 20–35 nm. The hemocompatibility (erythrocytes and leukocytes) was checked. Cytotoxicity results were similar to those of the control test sample, therefore suggesting hemocompatibility of the tested materials.


2020 ◽  
Vol 10 ◽  
Author(s):  
John Jairo Aguilera-Correa ◽  
Amaya Garcia-Casas ◽  
Aranzazu Mediero ◽  
David Romera ◽  
Francisca Mulero ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 224 ◽  
Author(s):  
Jung-Eun Park ◽  
Yong-Seok Jang ◽  
Tae-Sung Bae ◽  
Min-Ho Lee

Multi walled carbon nanotubes-hydroxyapatite (MWCNTs-HA) with various contents of MWCNTs was synthesized using the sol-gel method. MWCNTs-HA composites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). HA particles were generated on the surface of MWCNT. Produced MWCNTs-HA nanocomposites were coated on pure titanium (PT). Characteristic of the titanium coated MWCNTs-HA was evaluated by field-emission scanning electron microscopy (FE-SEM) and XRD. The results show that the titanium surface was covered with MWCNTs-HA nanoparticles and MWCNTs help form the crystalized hydroxyapatite. Furthermore, the MWCNTs-HA coated titanium was investigated for in vitro cellular responses. Cell proliferation and differentiation were improved on the surface of MWCNT-HA coated titanium.


2008 ◽  
Vol 24 (10) ◽  
pp. 1343-1351 ◽  
Author(s):  
A. Balamurugan ◽  
G. Balossier ◽  
D. Laurent-Maquin ◽  
S. Pina ◽  
A.H.S. Rebelo ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document