In Vitro Apatite-Forming Ability of Titania Films Depends on Their Substrates

2007 ◽  
Vol 330-332 ◽  
pp. 633-636 ◽  
Author(s):  
T. Shozui ◽  
Kanji Tsuru ◽  
Satoshi Hayakawa ◽  
Akiyoshi Osaka

Titania films were coated by means of sol-gel method on various substrates such as titanium, titanium alloy, silicon wafer, stainless-steel, alumina, and glass slide where they coded as C5Ti, C5Ti6Al4V, C5Si, C5SUS, C5Al2O3 and C5GS, respectively. Their in vitro apatite-forming ability was examined with the Kokubo’s simulated body fluid (SBF; pH 7.4, 36.5°C). C5Ti, C5Ti6Al4V and C5Si deposited apatite particles on their surface within 7 days, whereas, C5SUS, C5Al2O3 and C5GS did not. These results implied that the in vitro apatite-forming ability of the titania films indirectly depended on the chemical or physical properties of the substrates.

2016 ◽  
Author(s):  
S. A. Syed Nuzul Fadzli ◽  
S. Roslinda ◽  
Firuz Zainuddin ◽  
Hamisah Ismail

2005 ◽  
Vol 480-481 ◽  
pp. 21-26 ◽  
Author(s):  
L.J. Skipper ◽  
F.E. Sowrey ◽  
D.M. Pickup ◽  
R.J. Newport ◽  
K.O. Drake ◽  
...  

The formation of a carbonate-containing hydroxyapatite, HCAp, layer on bioactive calcium silicate sol-gel glass of the formula (CaO)0.3(SiO2)0.7 has been studied in-vitro in Simulated Body Fluid (SBF). Extended X-ray Absorption Fine Structure (EXAFS), X-ray Absorption Near Edge Structure (XANES), X-ray diffraction (XRD), and solid state nuclear magnetic resonance (NMR) measurements have been performed with results showing the formation of a significantly amorphous HCAp layer after less than 5 hours in solution.


2007 ◽  
Vol 330-332 ◽  
pp. 777-780 ◽  
Author(s):  
Fang Fang Wang ◽  
Yun Mao Liao ◽  
Min Wang ◽  
Ping Gong ◽  
Xiao Yu Li ◽  
...  

In this study, an exclusive sodium titanate (Na2Ti6O13) coating on titanium was fabricated by sol-gel method and evaluated in vitro. The coating was characterized by SEM and XRD. The bioactivity of the Na2Ti6O13 coating was evaluated by the biomimetic growth of apatite on its surface after soaked in an acellular simulated body fluid (SBF) for a period of time. In vitro osteoblasts culture was carried out to determine cytocompatibility by the measurement of the proliferation and alkaline phosphatase (ALP) activity of the cells. XRD patterns showed that Na2Ti6O13 was well crystallized when the coating was heated at 800°C. SEM observation exhibited that the Na2Ti6O13 coated titanium had a homogeneous surface without any cracks. After immersion in SBF, the apatite layer can be formed on the coating. The cells culture showed that the osteoblasts grew well on the Na2Ti6O13 coated titanium. It can be concluded that Na2Ti6O13 coating on titanium obtained by sol-gel method is bioactive.


2006 ◽  
Vol 510-511 ◽  
pp. 13-16
Author(s):  
Xiao Bing Zhao ◽  
Xuan Yong Liu ◽  
Chuan Xian Ding

TiO2 coatings on titanium alloy substrates were prepared by atmospheric plasma spraying using commercial nano-powders. Then, as-sprayed coatings were treated using 10% hydrofluoric acid (HF) at room temperature for 30 seconds. As-sprayed and HF-treated titania coatings were soaked in simulated body fluid to investigate the formation of apatite on their surface. Field-emission scanning electron microscopy was used to observe the surface morphologies, and the phase composition of the as-sprayed coating and apatite were analyzed by X-ray diffraction and energy-dispersive X-ray spectrometry. As-sprayed titania coating is composed of rutile, anatase, and a small quantity of Ti3O5. It exhibited excellent adhesion between the TiO2 coatings and titanium alloy substrates, and the bonding strength was about 38 MPa. After in vitro experiment, a new substance containing calcium and phosphate was formed on the surface of HF-treated TiO2 coatings after being soaked in SBF, while the new substance was not formed on the surface of as-sprayed TiO2 coatings. The results indicated that the bioactivity can be induced to the surface of plasma sprayed TiO2 coatings by hydrofluoric acid treatment.


2005 ◽  
Vol 284-286 ◽  
pp. 153-156 ◽  
Author(s):  
S.B. Cho ◽  
Sang Bae Kim ◽  
Keon Joon Cho ◽  
Ill Yong Kim ◽  
Chikara Ohtsuki ◽  
...  

Novel PMMA-based bone cement using bioactive sol-gel derived CaO-SiO2 powder in order to induce bioactivity as well as to increase its mechanical property. The novel PMMA-based bone cements formed apatite on their surfaces in Simulated Body Fluid(SBF). In the present study, a change in mechanical property of the cement was evaluated using SBF. Before soaking in SBF, its compressive strength showed 80.6±2.1MPa. After soaking in SBF for 2 weeks, 8weeks and 9 weeks, its compressive strength were changed to 83.6±1.6MPa, 87.3±2.4MPa and 85.6±1.8MPa, respectively. It is clear that from the above result, there is no decrease in its compressive strength within 9 weeks soaking in SBF. That it hardly decreases in compressive strength of 7P3S bone cement in SBF is due to the relative small amount of gel powder or its spherical shape and monosize. Therefore, the newly developed PMMA-based cement can bond to the living bone and also be effectively used as bioactive bone cement without decrease in mechanical property.


2010 ◽  
Vol 489 (1) ◽  
pp. 211-214 ◽  
Author(s):  
Min Zheng ◽  
Ding Fan ◽  
Xiu-kun Li ◽  
Jian-bin Zhang ◽  
Qi-bin Liu

2007 ◽  
Vol 330-332 ◽  
pp. 67-70 ◽  
Author(s):  
Jun Ou ◽  
Guang Fu Yin ◽  
Da Li Zhou ◽  
X. C. Chen ◽  
Ya Dong Yao ◽  
...  

Merwinite powders were synthesized by a sol-gel process. The bioactivity in vitro of merwinite was investigated by soaking the powders in simulated body fluid (SBF), the growth of hydroxyapatite(HAp) on the surface of the powder was evaluated in various time. It was found that hydroxyapatite was formed after soaking for 14 days. The results indicate that merwinite possessed apatite-formation ability might be a potential candidate biomaterial for hard tissue repair.


Sign in / Sign up

Export Citation Format

Share Document