Formation of Zn-ZnO Polygon Prismatic Nanocrystals by Liquid Source via Thermal Vapor Transport

Author(s):  
Kun-Ho Liu ◽  
Chin-Ching Lin ◽  
San-Yuan Chen
2002 ◽  
Vol 719 ◽  
Author(s):  
K. Thonke ◽  
N. Kerwien ◽  
A. Wysmolek ◽  
M. Potemski ◽  
A. Waag ◽  
...  

AbstractWe investigate by photoluminescence (PL) nominally undoped, commercially available Zinc Oxide substrates (from Eagle Picher) grown by seeded chemical vapor transport technique in order to identify residual donors and acceptors. In low temperature PL spectra the dominant emission comes from the decay of bound exciton lines at around 3.36 eV. Zeeman measurements allow the identification of the two strongest lines and some weaker lines in-between as donorrelated. From the associated two-electron satellite lines binding energies of the major donors of 48 meV and 55 meV, respectively, can be deduced.


1997 ◽  
Author(s):  
Leonard W. Lion ◽  
Brent Alspach ◽  
Jason Gilbert ◽  
Sean Lorden

2014 ◽  
Author(s):  
Jeffrey J. Swab ◽  
James W. McCauley ◽  
Brady Butler ◽  
Daniel Snoha ◽  
Donovan Harris ◽  
...  

2019 ◽  
Vol 12 (03) ◽  
pp. 1950032 ◽  
Author(s):  
Yuchen Deng ◽  
Yaming Zhang ◽  
Nanlong Zhang ◽  
Qiang Zhi ◽  
Bo Wang ◽  
...  

Pure dense silicon carbide (SiC) ceramics were obtained via the high-temperature physical vapor transport (HTPVT) method using graphite paper as the growth substrate. The phase composition, the evolution of microstructure, the thermal diffusivity and thermal conductivity at RT to 200∘C were investigated. The obtained samples had a relative density of higher than 98.7% and a large grain size of 1[Formula: see text]mm, the samples also had a room-temperature thermal conductivity of [Formula: see text] and with the temperature increased to 200∘C, the thermal conductivity still maintained at [Formula: see text].


2021 ◽  
Vol 40 (1) ◽  
pp. 171-177
Author(s):  
Yue Wang ◽  
Ben Fu Long ◽  
Chun Yu Liu ◽  
Gao An Lin

Abstract Herein, the evolution of reduction process of ultrafine tungsten powder in industrial conditions was investigated. The transition process of morphology and composition was examined via SEM, XRD, and calcination experiments. The results show that the reduction sequence of WO2.9 was WO2.9 → WO2.72 → WO2 → W on the surface, but WO2.9 → WO2 → W inside the oxide particles. With the aid of chemical vapor transport of WO x (OH) y , surface morphology transformed into rod-like, star-shaped cracking, floret, irregularly fibrous structure, and finally, spherical tungsten particles.


Sign in / Sign up

Export Citation Format

Share Document